Do you want to publish a course? Click here

Spectroscopy of Valley Splitting in a Silicon/Silicon-Germanium Two-Dimensional Electron Gas

97   0   0.0 ( 0 )
 Added by Srijit Goswami
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

The lifting of the two-fold degeneracy of the conduction valleys in a strained silicon quantum well is critical for spin quantum computing. Here, we obtain an accurate measurement of the splitting of the valley states in the low-field region of interest, using the microwave spectroscopy technique of electron valley resonance (EVR). We compare our results with conventional methods, observing a linear magnetic field dependence of the valley splitting, and a strong low-field suppression, consistent with recent theory. The resonance linewidth shows a marked enhancement above $Tsimeq 300$ mK.



rate research

Read More

In this work we report new silicon and germanium tubular nanostructures with no corresponding stable carbon analogues. The electronic and mechanical properties of these new tubes were investigated through ab initio methods. Our results show that the structures have lower energy than their corresponding nanoribbon structures and are stable up to high temperatures (500 and 1000 K, for silicon and germanium tubes, respectively). Both tubes are semiconducting with small indirect band gaps, which can be significantly altered by both compressive and tensile strains. Large bandgap variations of almost 50% were observed for strain rates as small as 3%, suggesting possible applications in sensor devices. They also present high Youngs modulus values (0.25 and 0.15 TPa, respectively). TEM images were simulated to help the identification of these new structures.
174 - C. H. Yang , A. Rossi , R. Ruskov 2013
Although silicon is a promising material for quantum computation, the degeneracy of the conduction band minima (valleys) must be lifted with a splitting sufficient to ensure formation of well-defined and long-lived spin qubits. Here we demonstrate that valley separation can be accurately tuned via electrostatic gate control in a metal-oxide-semiconductor quantum dot, providing splittings spanning 0.3 - 0.8 meV. The splitting varies linearly with applied electric field, with a ratio in agreement with atomistic tight-binding predictions. We demonstrate single-shot spin readout and measure the spin relaxation for different valley configurations and dot occupancies, finding one-electron lifetimes exceeding 2 seconds. Spin relaxation occurs via phonon emission due to spin-orbit coupling between the valley states, a process not previously anticipated for silicon quantum dots. An analytical theory describes the magnetic field dependence of the relaxation rate, including the presence of a dramatic rate enhancement (or hot-spot) when Zeeman and valley splittings coincide.
(111) Silicon quantum wells have been studied extensively, yet no convincing explanation exists for the experimentally observed breaking of 6 fold valley degeneracy into 2 and 4 fold degeneracies. Here, systematic sp3d5s* tight-binding and effective mass calculations are presented to show that a typical miscut modulates the energy levels which leads to breaking of 6 fold valley degeneracy into 2 lower and 4 raised valleys. An effective mass based valley-projection model is used to determine the directions of valley-minima in tight-binding calculations of large supercells. Tight-binding calculations are in better agreement with experiments compared to effective mass calculations.
Donors in silicon can now be positioned with an accuracy of about one lattice constant, making it possible in principle to form donor arrays for quantum computation or quantum simulation applications. However the multi-valley character of the silicon conduction band combines with central cell corrections to the donor state Hamiltonian to translate atomic scale imperfections in donor placement into strongly disordered inter-donor hybridization. We present a simple model that is able to account accurately for central-cell corrections, and use it to assess the impact of donor-placement disorder on donor array properties in both itinerant and localized limits.
Transport measurements at cryogenic temperatures through a few electron top gated quantum dot fabricated in a silicon/silicon-germanium heterostructure are reported. Variations in gate voltage induce a transition from an isolated dot toward a dot strongly coupled to the leads. In addition to Coulomb blockade, when the dot is strongly coupled to the leads, we observe the appearance of a zero bias conductance peak due to the Kondo effect. The Kondo peak splits in a magnetic field, and the splitting scales linearly with the applied field. We also observe a transition from pure Coulomb blockade to peaks with a Fano lineshape.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا