Do you want to publish a course? Click here

Duality Relation for Quantum Ratchets

69   0   0.0 ( 0 )
 Added by J. Peguiron
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

A duality relation between the long-time dynamics of a quantum Brownian particle in a tilted ratchet potential and a driven dissipative tight-binding model is reported. It relates a situation of weak dissipation in one model to strong dissipation in the other one, and vice versa. We apply this duality relation to investigate transport and rectification in ratchet potentials: From the linear mobility we infer ground-state delocalization for weak dissipation. We report reversals induced by adiabatic driving and temperature in the ratchet current and its dependence on the potential shape.

rate research

Read More

We investigate directed motion in non-adiabatically rocked ratchet systems sustaining few bands below the barrier. Upon restricting the dynamics to the lowest M bands, the total system-plus-bath Hamiltonian is mapped onto a discrete tight-binding model containing all the information both on the intra- and inter-well tunneling motion. A closed form for the current in the incoherent tunneling regime is obtained. In effective single-band ratchets, no current rectification occurs. We apply our theory to describe rectification effects in vortex quantum ratchets devices. Current reversals upon variation of the ac-field amplitude or frequency are predicted.
Unidirectional motion of solitons can take place, although the applied force has zero average in time, when the spatial symmetry is broken by introducing a potential $V(x)$, which consists of periodically repeated cells with each cell containing an asymmetric array of strongly localized inhomogeneities at positions $x_{i}$. A collective coordinate approach shows that the positions, heights and widths of the inhomogeneities (in that order) are the crucial parameters so as to obtain an optimal effective potential $U_{opt}$ that yields a maximal average soliton velocity. $U_{opt}$ essentially exhibits two features: double peaks consisting of a positive and a negative peak, and long flat regions between the double peaks. Such a potential can be obtained by choosing inhomogeneities with opposite signs (e.g., microresistors and microshorts in the case of long Josephson junctions) that are positioned close to each other, while the distance between each peak pair is rather large. These results of the collective variables theory are confirmed by full simulations for the inhomogeneous sine-Gordon system.
158 - Junjie Liu , Dvira Segal 2019
Recently, a thermodynamic uncertainty relation (TUR) has been formulated for classical Markovian systems demonstrating trade-off between precision (current fluctuation) and cost (dissipation). Systems that violate the TUR are interesting as they overcome another trade-off relation concerning the efficiency of a heat engine, its power, and its stability (power fluctuations). Here, we analyze the root, extent, and impact on performance of TUR violations in quantum thermoelectric junctions at steady state. Considering noninteracting electrons, first we show that only the classical component of the current noise, arising from single-electron transfer events follows the TUR. The remaining, quantum part of current noise is therefore responsible for the potential violation of TUR in such quantum systems. Next, focusing on the resonant transport regime we determine the parameter range in which the violation of the TUR can be observed---for both voltage-biased junctions and thermoelectric engines. We illustrate our findings with exact numerical simulations of a serial double quantum dot system. Most significantly, we demonstrate that the TUR always holds in noninteracting thermoelectric generators when approaching the thermodynamic efficiency limit.
The thermodynamic uncertainty relation (TUR) is expected to hold in nanoscale electronic conductors, when the electron transport process is quantum coherent and the transmission probability is constant (energy and voltage independent). We present measurements of the electron current and its noise in gold atomic-scale junctions and confirm the validity of the TUR for electron transport in realistic quantum coherent conductors. Furthermore, we show that it is beneficial to present the current and its noise as a TUR ratio in order to identify deviations from noninteracting-electron coherent dynamics.
We demonstrate transport rectification in a hermitian Hamiltonian quantum ratchet by a dissipative, dynamic impurity. While the bulk of the ratchet supports transport in both directions, the properly designed loss function of the local impurity acts as a direction-dependent filter for the moving states. We analyse this scheme theoretically by making use of Floquet-S-Matrix theory. In addition, we provide the direct experimental observation of one-way transmittance in periodically modulated plasmonic waveguide arrays containing a local impurity with engineered losses.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا