de Haas-van Alphen oscillation spectrum is studied for an idealized two-dimensional Fermi liquid with two parabolic bands in the case of canonical (fixed number of quasiparticles) and grand canonical (fixed chemical potential) ensembles. As already reported in the literature, oscillations of the chemical potential in magnetic field yield frequency combinations that are forbidden in the framework of the semiclassical theory. Exact analytical calculation of the Fourier components is derived at zero temperature and an asymptotic expansion is given for the high temperature and low magnetic field range. A good agreement is obtained between analytical formulae and numerical computations.