Do you want to publish a course? Click here

Structural modulations in $Sr_{14} Cu_{24} O_{41}$ and their relation to charge ordering

233   0   0.0 ( 0 )
 Added by M. V. Zimmermann
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

Structural properties of the spin chain and ladder compound Sr$_{14}$Cu$_{24}$O$_{41}$ have been studied using diffraction with hard x-rays. Strong incommensurate modulation reflections are observed due to the lattice mismatch of the chain and ladder structure, respectively. While modulation reflections of low orders display only a weak temperature independence, higher orders dramatically increase in intensity when cooling the sample to 10 K. All observed modulation reflections are indexed within the super space group symmetry and no structural phase transition could be identified between 10 K and room temperature. We argue that these modulation reflections are not caused by a five-fold periodicity of the chain lattice, as claimed by Fukuda et al. Phys. Rev. B 66, 012104 (2002), but that holes localize in the potential given by the lattice modulation, which in turn gives rise to a further deformation of the lattice.



rate research

Read More

323 - B. Gorshunov , P. Haas , T. R~o~om 2002
The electrodynamic response of the spin-ladder compound Sr$_{14-x}$Ca$_x$Cu$_{24}$O$_{41}$ ($x=0, 3, 9$) has been studied from radiofrequencies up to the infrared. At temperatures below 250 K a pronounced absorption peak appears around 12 cm$^{-1}$ in Sr$_{14}$Cu$_{24}$O$_{41}$ for the radiation polarized along the chains/ladders (${bf E}parallel {bf c}$). In addition a strongly temperature dependent dielectric relaxation is observed in the kHz - MHz range. We explain this behavior by a charge density wave which develops in the ladders sub-system and produces a mode pinned at 12 cm$^{-1}$. With increasing Ca doping the mode shifts up in frequency and eventually disappears for $x=9$ because the dimensionality of the system crosses over from one to two dimensions, giving way to the superconducting ground state under pressure.
We report an electron spin resonance (ESR) study of single crystals of the spin-chain spin-ladder compound (Sr,La,Ca)_{14}Cu_{24}O_{41}. The data suggest that in intrinsically hole doped Sr_{14-x}Ca_xCu_{24}O_{41} only a small amount of holes is transferred from the chains to the ladders with increasing x, resulting in a crossover from spin dimerized to uniform spin chains. In the samples of La_{14-x}Ca_xCu_{24}O_{41} with reduced hole content a very broad signal is observed in the paramagnetic state, indicative of a surprisingly strong anisotropy of the nearest neighbor exchange in the chains.
Transport and 63^Cu-NMR, Knight shift and T_1, measurements performed on the two-leg spin ladders of Sr_2Ca_{12}Cu_{24}O_{41} single crystals show a collapse of the gap in ladder spin excitations when superconductivity is stabilised under a pressure of 29 kbar. These results support the prediction made with exact diagonalisation techniques in two-leg isotropic t-J ladders of a transition between a low-doping spin gap phase and a gapless 1-D Tomonaga-Luttinger regime.
194 - C. F. Chang , Z. Hu , Hua Wu 2009
Using Co-L_(2,3) and O-K x-ray absorption spectroscopy, we reveal that the charge ordering in La_(1.5)Sr_(0.5)CoO4 involves high spin (S=3/2) Co^2+ and low spin (S=0) Co^3+ ions. This provides evidence for the spin blockade phenomenon as a source for the extremely insulating nature of the La_(2-x)Sr_(x)CoO4 series. The associated e_g^2 and e_g^0 orbital occupation accounts for the large contrast in the Co-O bond lengths, and in turn, the high charge ordering temperature. Yet, the low magnetic ordering temperature is naturally explained by the presence of the non-magnetic (S=0) Co^3+ ions. From the identification of the bands we infer that La_(1.5)Sr_(0.5)CoO4 is a narrow band material.
When two quantum systems are coupled via a mediator, their dynamics has traces of non-classical properties of the mediator. We show how this observation can be effectively utilised to study the quantum nature of materials without well-established structure. A concrete example considered is Sr$_{14}$Cu$_{24}$O$_{41}$. Measurements of low temperature magnetic and thermal properties of this compound were explained with long-range coupling of unpaired spins through dimerised spin chains. We first show that the required coupling is not provided by the spin chain alone and give alternative compact two-dimensional spin structures compatible with the experimental results. Then we argue that any mediator between the unpaired spins must share with them quantum correlations in the form of quantum discord and in many cases quantum entanglement. In conclusion, present data witnesses quantum mediators between unpaired spins in Sr$_{14}$Cu$_{24}$O$_{41}$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا