Molecular engineering of antiferromagnetic rings for quantum computation


Abstract in English

The substitution of one metal ion in a Cr-based molecular ring with dominant antiferromagnetic couplings allows to engineer its level structure and ground-state degeneracy. Here we characterize a Cr7Ni molecular ring by means of low-temperature specific-heat and torque-magnetometry measurements, thus determining the microscopic parameters of the corresponding spin Hamiltonian. The energy spectrum and the suppression of the leakage-inducing S-mixing render the Cr7Ni molecule a suitable candidate for the qubit implementation, as further substantiated by our quantum-gate simulations.

Download