Do you want to publish a course? Click here

Ballistic conductance of magnetic Co and Ni nanowires with ultrasoft pseudo-potentials

124   0   0.0 ( 0 )
 Added by Alexander Smogunov
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

The scattering-based approach for calculating the ballistic conductance of open quantum systems is generalized to deal with magnetic transition metals as described by ultrasoft pseudo-potentials. As an application we present quantum-mechanical conductance calculations for monatomic Co and Ni nanowires with a magnetization reversal. We find that in both Co and Ni nanowires, at the Fermi energy, the conductance of $d$ electrons is blocked by a magnetization reversal, while the $s$ states (one per spin) are perfectly transmitted. $d$ electrons have a non-vanishing transmission in a small energy window below the Fermi level. Here, transmission is larger in Ni than in Co.



rate research

Read More

Electronic and transport properties of a short Ni nanowire suspended between two semi-infinite ferromagnetic Ni leads are explored in the framework of density-functional theory. The spin-dependent ballistic conductance of the nanowire is calculated using a scattering-based approach and the Landauer-Buttiker formula. The total calculated conductance in units of $G_0 = 2e^2/h$ is around 1.6, in fairly good agreement with the broad peak observed around 1.5 for the last conductance step in break junctions. Separating contributions from different spins, we find nearly 0.5 $G_0$ from the majority spin $s$-like channel, whereas the remaining minority spin conductance of 1.1 $G_0$ contains significant contributions from several $d$ states, but much less than 0.5 $G_0$ from $s$ states. The influence of the structural relaxation on the magnetic properties and the ballistic conductance of the nanowire is also studied.
The influence of local oxidation in silicon nanowires on hole transport, and hence the effect of varying the oxidation state of silicon atoms at the wire surface, is studied using density functional theory in conjunction with a Greens function scattering method. For silicon nanowires with growth direction along [110] and diameters of a few nanometers, it is found that the introduction of oxygen bridging and back bonds does not significantly degrade hole transport for voltages up to several hundred millivolts relative to the valence band edge. As a result, the mean free paths are comparable to or longer than the wire lengths envisioned for transistor and other nanoelectronics applications. Transport along [100]-oriented nanowires is less favorable, thus providing an advantage in terms of hole mobilities for [110] nanowire orientations, as preferentially produced in some growth methods.
335 - G. Sclauzero 2008
We carry out a first-principles density functional study of the interaction between a monatomic Pt wire and a CO molecule, comparing the energy of different adsorption configurations (bridge, on top, substitutional, and tilted bridge) and discussing the effects of spin-orbit (SO) coupling on the electronic structure and on the ballistic conductance of two of these systems (bridge and substitutional). We find that, when the wire is unstrained, the bridge configuration is energetically favored, while the substitutional geometry becomes possible only after the breaking of the Pt-Pt bond next to CO. The interaction can be described by a donation/back-donation process similar to that occurring when CO adsorbs on transition-metal surfaces, a picture which remains valid also in presence of SO coupling. The ballistic conductance of the (tipless) nanowire is not much reduced by the adsorption of the molecule on the bridge and on-top sites, but shows a significant drop in the substitutional case. The differences in the electronic structure due to the SO coupling influence the transmission only at energies far away from the Fermi level so that fully- and scalar-relativistic conductances do not differ significantly.
[Co/Ni] multilayers with perpendicular magnetic anisotropy (PMA) have been researched and applied in various spintronic applications. Typically the seed layer material is studied to provide the desired face-centered cubic (textit{fcc}) texture to the [Co/Ni] to obtain PMA. The integration of [Co/Ni] in back-end-of-line (BEOL) processes also requires the PMA to survive post-annealing. In this paper, the impact of NiCr, Pt, Ru, and Ta seed layers on the structural and magnetic properties of [Co(0.3 nm)/Ni(0.6 nm)] multilayers is investigated before and after annealing. The multilayers were deposited textit{in-situ} on different seeds via physical vapor deposition at room temperature. The as-deposited [Co/Ni] films show the required textit{fcc}(111) texture on all seeds, but PMA is only observed on Pt and Ru. In-plane magnetic anisotropy (IMA) is obtained on NiCr and Ta seeds, which is attributed to strain-induced PMA loss. PMA is maintained on all seeds after post-annealing up to 400$^{circ}$C. The largest effective perpendicular anisotropy energy ($K_U^{mathrm{eff}}approx 2times10^5$J/m$^3$) after annealing is achieved on NiCr seed. The evolution of PMA upon annealing cannot be explained by further crystallization during annealing or strain-induced PMA, nor can the observed magnetization loss and the increased damping after annealing. Here we identify the diffusion of the non-magnetic materials from the seed into [Co/Ni] as the major driver of the changes in the magnetic properties. By selecting the seed and post-annealing temperature, the [Co/Ni] can be tuned in a broad range for both PMA and damping.
169 - Shuang Zhou , Ji Wang , Yakui Weng 2016
A low temperature hydrothermal route has been developed, and pure phase Ba$_2$Ni$_3$F$_{10}$ nanowires have been successfully prepared under the optimized conditions. Under the 325 nm excitation, the Ba$_2$Ni$_3$F$_{10}$ nanowires exhibit three emission bands with peak positions locating at 360 nm, 530 nm, and 700 nm, respectively. Combined with the first-principles calculations, the photoluminescence property can be explained by the electron transitions between the t2g and eg orbitals. Clear hysteresis loops observed below the temperature of 60 K demonstrates the weak ferromagnetism in Ba$_2$Ni$_3$F$_{10}$ nanowires, which has been attributed to the surface strain of nanowires. Exchange bias with blocking temperature of 55 K has been observed, which originates from the magnetization pinning under the cooling field due to antiferromagnetic core/weak ferromagnetic shell structure of Ba2Ni3F10 nanowires.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا