Do you want to publish a course? Click here

Experimental studies of equilibrium vortex properties in a Bose-condensed gas

63   0   0.0 ( 0 )
 Added by I. R. Coddington
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

We characterize several equilibrium vortex effects in a rotating Bose-Einstein condensate. Specifically we attempt precision measurements of vortex lattice spacing and the vortex core size over a range of condensate densities and rotation rates. These measurements are supplemented by numerical simulations, and both experimental and numerical data are compared to theory predictions of Sheehy and Radzihovsky [17] (cond-mat/0402637) and Baym and Pethick [25] (cond-mat/0308325). Finally, we study the effect of the centrifugal weakening of the trapping spring constants on the critical temperature for quantum degeneracy and the effects of finite temperature on vortex contrast.



rate research

Read More

We report the first experimental observation of Beliaev damping of a collective excitation in a Bose-condensed gas. Beliaev damping is not predicted by the Gross-Pitaevskii equation and so this is one of the few experiments that tests BEC theory beyond the mean field approximation. Measurements of the amplitude of a high frequency scissors mode, show that the Beliaev process transfers energy to a lower lying mode and then back and forth between these modes. These characteristics are quite distinct from those of Landau damping, which leads to a monotonic decrease in amplitude. To enhance the Beliaev process we adjusted the geometry of the magnetic trapping potential to give a frequency ratio of 2 to 1 between two of the scissors modes of the condensate. The ratios of the trap oscillation frequencies $omega_y / omega_x$ and $omega_z / omega_x$ were changed independently, so that we could investigate the resonant coupling over a range of conditions.
162 - C. Raman , M. Kohl , R. Onofrio 1999
We have studied dissipation in a Bose--Einstein condensed gas by moving a blue detuned laser beam through the condensate at different velocities. Strong heating was observed only above a critical velocity.
Our understanding of various states of matter usually relies on the assumption of thermodynamic equilibrium. However, the transitions between different phases of matter can be strongly affected by non-equilibrium phenomena. Here we demonstrate and explain an example of non-equilibrium stalling of a continuous, second-order phase transition. We create a superheated atomic Bose gas, in which a Bose-Einstein condensate (BEC) persists above the equilibrium critical temperature, $T_c$, if its coupling to the surrounding thermal bath is reduced by tuning interatomic interactions. For vanishing interactions the BEC persists in the superheated regime for a minute. However, if strong interactions are suddenly turned on, it rapidly boils away. Our observations can be understood within a two-fluid picture, treating the condensed and thermal components of the gas as separate equilibrium systems with a tuneable inter-component coupling. We experimentally reconstruct a non-equilibrium phase diagram of our gas, and theoretically reproduce its main features.
We present an ab initio molecular dynamics (MD) investigation of the tautomeric equilibrium for aqueous solutions of glycine and acetone at realistic experimental conditions. Metadynamics is used to accelerate proton migration among tautomeric centers. Due to the formation of complex water-ion structures involved the proton dynamics in the aqueous environment, standard enhanced sampling approaches may face severe limitations in providing a general description of the phenomenon. Recently, we developed a set of Collective Variables (CVs) designed to study protons transfer reactions in complex condensed systems [Grifoni et al. PNAS, 2019, 116(10), 4054-4057]. In this work we applied this approach to study proton dissociation dynamics leading to tautomeric interconversion of biologically and chemically relevant prototypical systems, namely glycine and acetone in water. Although relatively simple from a chemical point of view, the results show that even for these small systems complex reaction pathways and non-trivial conversion dynamics are observed. The generality of our method allows obtaining these results without providing any prior information on the dissociation dynamics but only the atomic species that can exchange protons in the process. Our results agree with literature estimates and demonstrate the general applicability of this method in the study of tautomeric reactions.
In terms of linearized Gross-Pitaevskii equation we have studied the process of sound emission arises from a supersonic particle motion in a Bose-condensed gas. By analogy with the method used for description of Vavilov-Cherenkov phenomenon, we have found a friction work created by the particle generated condensate polarization. For comparison we have found radiation intensity of excitations. Both methods gives the same result.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا