Do you want to publish a course? Click here

Realization of a magnetically guided atomic beam in the collisional regime

100   0   0.0 ( 0 )
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

We describe the realization of a magnetically guided beam of cold rubidium atoms, with a flux of $7times 10^9$ atoms/s, a temperature of 400 $mu$K and a mean velocity of 1 m/s. The rate of elastic collisions within the beam is sufficient to ensure thermalization. We show that the evaporation induced by a radio-frequency wave leads to appreciable cooling and increase in phase space density. We discuss the perspectives to reach the quantum degenerate regime using evaporative cooling.



rate research

Read More

107 - J. M. Vogels , T. Lahaye , C. Roos 2004
In this paper, we report our progress towards the realization of a continuous guided atomic beam in the degenerate regime. So far, we have coupled into a magnetic guide a flux of a few $10^{8}$ atoms/s at 60 cm/s with a propagation in the guide over more than 2 meters. At this stage, the collision rate is not high enough to start an efficient forced evaporative cooling. Here we describe a new approach to reach the collisional regime. It is based on a pulsed feeding of the magnetic guide at a high repetition rate. The overlap of the packets of atoms occurs in the guide and leads to a continuous guided beam. We discuss different ways to increase the collision rate of this beam while keeping the phase space density constant by shaping the external potential.
130 - Thierry Lahaye 2005
We report on our recent progress in the manipulation and cooling of a magnetically guided, high flux beam of $^{87}{rm Rb}$ atoms. Typically $7times 10^9$ atoms per second propagate in a magnetic guide providing a transverse gradient of 800 G/cm, with a temperature $sim550$ $mu$K, at an initial velocity of 90 cm/s. The atoms are subsequently slowed down to $sim 60$ cm/s using an upward slope. The relatively high collision rate (5 s$^{-1}$) allows us to start forced evaporative cooling of the beam, leading to a reduction of the beam temperature by a factor of ~4, and a ten-fold increase of the on-axis phase-space density.
In this report we demonstrate a novel concept for a planar cavity polariton beam amplifier using non-resonant excitation. In contrast to resonant excitation schemes, background carriers are injected which form excitons, providing both gain and a repulsive potential for a polariton condensate. Using an attractive potential environment induced by a locally elongated cavity layer, the repulsive potential of the injected background carriers is compensated and a significant amplification of polariton beams is achieved without beam distortion.
The Laplace operator encodes the behaviour of physical systems at vastly different scales, describing heat flow, fluids, as well as electric, gravitational, and quantum fields. A key input for the Laplace equation is the curvature of space. Here we demonstrate that the spectral ordering of Laplacian eigenstates for hyperbolic (negative curvature) and flat (zero curvature) two-dimensional spaces has a universally different structure. We use a lattice representation of hyperbolic space in an electric-circuit network to measure the eigenstates of a hyperbolic drum, and to analyze signal propagation along the curved geodesics. Our experiments showcase a versatile platform to emulate hyperbolic lattices in tabletop experiments, which can be utilized to explore propagation dynamics as well as to realize topological hyperbolic matter.
We report on the creation of a degenerate Fermi gas consisting of a balanced mixture of atoms in three different hyperfine states of $^6$Li. This new system consists of three distinguishable Fermions with different and tunable interparticle scattering lengths $a_{12}$, $a_{13}$ and $a_{23}$. We are able to prepare samples containing $5 cdot 10^4$ atoms in each state at a temperature of about $215 $nK, which corresponds to $T/T_F approx 0.37$. We investigated the collisional stability of the gas for magnetic fields between 0 and 600 G and found a prominent loss feature at 130 G. From lifetime measurements we determined three-body loss coefficients, which vary over nearly three orders of magnitude.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا