Partially asymmetric exclusion models with quenched disorder


Abstract in English

We consider the one-dimensional partially asymmetric exclusion process with random hopping rates, in which a fraction of particles (or sites) have a preferential jumping direction against the global drift. In this case the accumulated distance traveled by the particles, x, scales with the time, t, as x ~ t^{1/z}, with a dynamical exponent z > 0. Using extreme value statistics and an asymptotically exact strong disorder renormalization group method we analytically calculate, z_{pt}, for particlewise (pt) disorder, which is argued to be related to the dynamical exponent for sitewise (st) disorder as z_{st}=z_{pt}/2. In the symmetric situation with zero mean drift the particle diffusion is ultra-slow, logarithmic in time.

Download