Do you want to publish a course? Click here

Periodic Coherence Peak Height Modulations in Superconducting BSCCO

352   0   0.0 ( 0 )
 Added by Alan Fang
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we analyze, using scanning tunneling spectroscopy (STS), the local density of electronic states (LDOS) in nearly optimally doped BSCCO in zero field. We see both dispersive and non-dispersive spatial LDOS modulations as a function of energy in our samples. Moreover, a spatial map of the superconducting coherence peak heights shows the same structure as the low energy LDOS. This suggests that these non-dispersive LDOS modulations originate from an underlying charge-density modulation which interacts with superconductivity.



rate research

Read More

In this paper we analyze, using scanning tunneling spectroscopy, the density of electronic states in nearly optimally doped BSCCO in zero field. Focusing on the superconducting gap, we find patches of what appear to be two different phases in a background of some average gap, one with a relatively small gap and sharp large coherence peaks and one characterized by a large gap with broad weak coherence peaks. We compare these spectra with calculations of the local density of states for a simple phenomenological model in which a 2 xi_0 * 2 xi_0 patch with an enhanced or supressed d-wave gap amplitude is embedded in a region with a uniform average d-wave gap.
Microscopy (STM). At all dopings, the low energy density-of-states modulations are analyzed according to a simple model of quasiparticle interference and found to be consistent with Fermi-arc superconductivity. The superconducting coherence-peaks, ubiquitous in near-optimal tunneling spectra, are destroyed with strong underdoping and a new spectral type appears. Exclusively in regions exhibiting this new spectrum, we find local `checkerboard charge-order with wavevector Q=(2pi/4.5a,0);(0,2pi/4.5a)+15%. Surprisingly, this order coexists harmoniously with the the low energy
171 - J. Corson 2000
We have measured the complex conductivity of a BSCCO(2212) thin film between 0.2 and 1.0 THz. We find the conductivity in the superconducting state to be well described as the sum of contributions from quasiparticles, the condensate, and order parameter fluctuations which draw 30% of the spectral weight from the condensate. An analysis based on this decomposition yields a quasiparticle scattering rate on the order of k_(B)*T/(hbar) for temperatures below Tc.
We measure the coherence of a new superconducting qubit, the {em low-impedance flux qubit}, finding $T_2^* sim T_1 sim 1.5mu$s. It is a three-junction flux qubit, but the ratio of junction critical currents is chosen to make the qubits potential have a single well form. The low impedance of its large shunting capacitance protects it from decoherence. This qubit has a moderate anharmonicity, whose sign is reversed compared with all other popular qubit designs. The qubit is capacitively coupled to a high-Q resonator in a $lambda/2$ configuration, which permits the qubits state to be read out dispersively.
We study coherent quantum phase-slips which lift the ground state degeneracy in a Josephson junction ring, pierced by a magnetic flux of the magnitude equal to half of a flux quantum. The quantum phase-slip amplitude is sensitive to the normal mode structure of superconducting phase oscillations in the ring (Mooij-Schon modes). These, in turn, are affected by spatial inhomogeneities in the ring. We analyze the case of weak periodic modulations of the system parameters and calculate the corresponding modification of the quantum phase-slip amplitude.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا