Do you want to publish a course? Click here

Oxygen-isotope effect on the in-plane penetration depth in cuprate superconductors

244   0   0.0 ( 0 )
 Added by Khasanov Rustem
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

Muon-spin rotation (muSR) studies of the oxygen isotope (^{16}O/^{18}O) effect (OIE) on the in-plane magnetic field penetration depth lambda_{ab} in cuprate high-temperature superconductors (HTS) are presented. First, the doping dependence of the OIE on the transition temperature T_c in various HTS is briefly discussed. It is observed that different cuprate families show a similar doping dependence of the OIE on T_c. Then, bulk muSR, low-energy muSR, and magnetization studies of the total and site-selective OIE on lambda_{ab} are described in some detail. A substantial OIE on lambda_{ab} was observed in various cuprate families at all doping levels, suggesting that cuprate HTS are non-adiabatic superconductors. The experiments clearly demonstrate that the total OIE on T_c and lambda_{ab} arise from the oxygen sites within the superconducting CuO_2 planes, demonstrating that the phonon modes involving the movement of planar oxygen are dominantly coupled to the supercarriers. Finally, it is shown that the OIE on T_c and lambda_{ab} exhibit a relation that appears to be generic for different families of cuprate HTS. The observation of these unusual isotope effects implies that lattice effects play an essential role in cuprate HTS and have to be considered in any realistic model of high-temperature superconductivity.



rate research

Read More

We report the first direct observation of the oxygen-isotope ($^{16}$O/$^{18}$O) effect on the in-plane penetration depth $lambda_{ab}$ in a nearly optimally doped YBa$_2$Cu$_3$O$_{7-delta}$ film using the novel low-energy muon-spin rotation technique. Spin polarized low energy muons are implanted in the film at a known depth $z$ beneath the surface and precess in the local magnetic field $B(z)$. This feature allows us to measure directly the profile $B(z)$ of the magnetic field inside the superconducting film in the Meissner state and to make a model independent determination of $lambda_{ab}$. A substantial isotope shift $Deltalambda_{ab}/lambda_{ab}=2.8(7)$% at 4 K is observed, implying that the in-plane effective supercarrier mass $m_{ab}^ast$ is oxygen-isotope dependent with $Delta m_{ab}^ast/m_{ab}^ast = 5.5(1.4)%$.
The c-axis Josephson plasmon in optimally doped single-layer and bi-layer high Tc cuprates Tl2201 and Tl2212 have been investigated using infrared spectroscopy. We observed the plasma frequencies for these two compounds at 27.8 and 25.6 cm-1 respectively, which we interpret as a Josephson resonance across the TlO blocking layers. No maximum in the temperature dependence of the c-axis conductivity was observed below Tc, indicating that even in the superconducting state a coherent quasi-particle contribution to the c-axis conductivity is absent or very weak, in contrast to the behaviour of the ab-plane conductivity.
In high Tc superconductors the magnetic and electronic properties are determined by the probability that valence electrons virtually jump from site to site in the CuO2 planes, a mechanism opposed by on-site Coulomb repulsion and favored by hopping integrals. The spatial extent of the latter is related to transport properties, including superconductivity, and to the dispersion relation of spin excitations (magnons). Here, for three antiferromagnetic parent compounds (single-layer Bi2Sr0.99La1.1CuO6+delta, double-layer Nd1.2Ba1.8Cu3O6 and infinite-layer CaCuO2) differing by the number of apical atoms, we compare the magnetic spectra measured by resonant inelastic x-ray scattering over a significant portion of the reciprocal space and with unprecedented accuracy. We observe that the absence of apical oxygens increases the in-plane hopping range and, in CaCuO2, it leads to a genuine 3D exchange-bond network. These results establish a corresponding relation between the exchange interactions and the crystal structure, and provide fresh insight into the materials dependence of the superconducting transition temperature.
We study the effect of disorder on the London penetration depth in iron-based superconductors. The theory is based on a two-band model with quasi-two-dimensional Fermi surfaces, which allows for the coexistence region in the phase diagram between magnetic and superconducting states in the presence of intraband and interband scattering. Within the quasiclassical approximation we derive and solve Eilenbergers equations, which include a weak external magnetic field, and provide analytical expressions for the penetration depth in the various limiting cases. A complete numerical analysis of the doping and temperature dependence of the London penetration depth reveals the crucial effect of disorder scattering, which is especially pronounced in the coexistence phase. The experimental implications of our results are discussed.
A study of the pressure effect on the magnetic penetration depth $lambda$ in polycrystalline MgB$_{2}$ was performed by measuring the temperature dependence of the magnetization under an applied pressure of 0.15 and 1.13 GPa. We found that $lambda^{-2}$ at low temperature is only slightly affected by pressure [$frac{Delta lambda^{-2}}{lambda^{-2}} = 1.5(9)%$], in contrast to cuprate superconductors, where, in the same range of pressure, a very large effect on $lambda^{-2}$ was found. Theoretical estimates indicate that most of the pressure effect on $lambda^{-2}$ in MgB$_2$ arises from the electron-phonon interaction.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا