Density-functional calculations using an exact exchange potential for a two-dimensional electron gas (2DEG) formed in a GaAs single quantum well predict the existence of a spin-polarized phase, when an excited subband becomes slightly populated. Direct experimental evidence is obtained from low temperature and low excitation-power photoluminescence (PL) spectra which display the sudden appearance of a sharp emission peak below the energy of the optical transition from the first excited electron subband upon its occupation. The behavior of this PL feature in magnetic fields applied in-plane as well as perpendicular to the 2DEG indicate the formation of spin-polarized domains in the excited subband with in-plane magnetization. For it speaks also the strong enhancement of exchange-vertex corrections observed in inelastic light scattering spectra by spin-density excitations of a slightly occupied first-excited subband.