No Arabic abstract
The field induced magnetic phase transitions of Cs$_2$CuBr$_4$ were investigated by means of magnetization process and neutron scattering experiments. This system undergoes magnetic phase transition at Ne{e}l temperature $T_mathrm{N}=1.4$ K at zero field, and exhibits the magnetization plateau at approximately one third of the saturation magnetization for the field directions $Hparallel b$ and $Hparallel c$. In the present study, additional symptom of the two-third magnetization plateau was found in the field derivative of the magnetization process. The magnetic structure was found to be incommensurate with the ordering vector $boldsymbol{Q}=(0, 0.575, 0)$ at zero field. With increasing magnetic field parallel to the c-axis, the ordering vector increases continuously and is locked at $boldsymbol{Q}=(0, 0.662, 0)$ in the plateau field range $13.1 mathrm{T} < H < 14.4 mathrm{T}$. This indicates that the collinear textit{up-up-down} spin structure is stabilized by quantum fluctuation at the magnetization plateau.
We have found an unusual competition of two frustration mechanisms in the 2D quantum antiferromagnet Cs$_2$CoBr$_4$. The key actors are the alternation of single-ion planar anisotropy direction of the individual magnetic Co$^{2+}$ ions, and their arrangement in a distorted triangular lattice structure. In particular, the uniquely oriented Ising-type anisotropy emerges from the competition of easy-plane ones, and for a magnetic field applied along this axis one finds a cascade of five ordered phases at low temperatures. Two of these phases feature magnetization plateaux. The low-field one is supposed to be a consequence of a collinear ground state stabilized by the anisotropy, while the other plateau bears characteristics of an up-up-down state exclusive for lattices with triangular exchange patterns. Such coexistence of the magnetization plateaux is a fingerprint of competition between the anisotropy and the geometric frustration in Cs$_2$CoBr$_4$.
We report on high-field electron spin resonance (ESR) studies of magnetic excitations in the spin-1/2 triangular-lattice antiferromagnet Cs$_2$CuBr$_4$. Frequency-field diagrams of ESR excitations are measured for different orientations of magnetic fields up to 25 T. We show that the substantial zero-field energy gap, $Deltaapprox9.5$ K, observed in the low-temperature excitation spectrum of Cs$_2$CuBr$_4$ [Zvyagin $et~al.$, Phys. Rev. Lett. 112, 077206 (2014)], is present well above $T_N$. Noticeably, the transition into the long-range magnetically ordered phase does not significantly affect the size of the gap, suggesting that even below $T_N$ the high-energy spin dynamics in Cs$_2$CuBr$_4$ is determined by short-range-order spin correlations. The experimental data are compared with results of model spin-wave-theory calculations for spin-1/2 triangle-lattice antiferromagnet.
Specific heat and the magnetocaloric effect are used to probe the field-induced up-up-down phase of Cs2CuBr4, a quasi-two-dimensional spin-1/2 triangular antiferromagnet with near-maximal frustration. The shape of the magnetic phase diagram shows that the phase is stabilized by quantum fluctuations, not by thermal fluctuations as in the corresponding phase of classical spins. The magnon gaps determined from the specific heat are considerably larger than those expected for a Heisenberg antiferromagnet, probably due to the presence of a small Dzyaloshinskii-Moriya interaction.
The crystal structure of Cs$_2$CuBr$_4$ is the same as that of Cs$_2$CuCl$_4$, which has been characterized as a spin-1/2 quasi-two-dimensional frustrated system. The magnetic properties of Cs$_2$CuBr$_4$ were investigated by magnetization and specific heat measurements. The phase transition at zero magnetic field was detected at $T_{rm N}=1.4$ K. It was observed that the magnetization curve has a plateau at about one-third of the saturation magnetization for magnetic field $H$ parallel to the $b$- and $c$-axes, while no plateau was observed for $Hparallel a$. The field-induced phase transition to the plateau state appears to be of the first order. The mechanism leading to the magnetization plateau is discussed.
We report $^{133}$Cs nuclear magnetic resonance (NMR) measurements on the 2D frustrated Heisenberg antiferromagnet Cs$_2$CuCl$_4$ down to 2 K and up to 15 T. We show that $^{133}$Cs NMR is a good probe of the magnetic degrees of freedom in this material. Cu spin degrees of freedom are sensed through a strong anisotropic hyperfine coupling. The spin excitation gap opens above the critical saturation field. The gap value was determined from the activation energy of the nuclear spin-lattice relaxation rate in a magnetic field applied parallel to the Cu chains (b axis). The values of the g-factor and the saturation field are consistent with the neutron-scattering and magnetization results. The measurements of the spin-spin relaxation time are exploited to show that no structural changes occur down to the lowest temperatures investigated.