We show that lightly doped holes will be self-trapped in an antiferromagnetic spin background at low-temperatures, resulting in a spontaneous translational symmetry breaking. The underlying Mott physics is responsible for such novel self-localization of charge carriers. Interesting transport and dielectric properties are found as the consequences, including large doping-dependent thermopower and dielectric constant, low-temperature variable-range-hopping resistivity, as well as high-temperature strange-metal-like resistivity, which are consistent with experimental measurements in the high-T$_c$ cuprates. Disorder and impurities only play a minor and assistant role here.