Do you want to publish a course? Click here

Traffic on complex networks: Towards understanding global statistical properties from microscopic density fluctuations

114   0   0.0 ( 0 )
 Added by Bosiljka Tadic
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the microscopic time fluctuations of traffic-load and the global statistical properties of a dense traffic of particles on scale-free cyclic graphs. For a wide range of driving rates $R$ the traffic is stationary and the load timeseries exhibit anti-persistence due to the regulatory role of the super-structure associated with two hub nodes in the network. We discuss how the super-structure effects the functioning of the network at high traffic density and at the jamming threshold. The degree of correlations systematically decreases with increasing traffic density and eventually disappears when approaching a jamming density $R_c$. Already before jamming we observe qualitative changes in the global network-load distributions and the particle queuing-times. These changes are related to the occurrence of temporary crises in which the network-load increases dramatically, and then slowly falls back to a value characterizing free-flow.



rate research

Read More

Traffic fluctuation has so far been studied on unweighted networks. However many real traffic systems are better represented as weighted networks, where nodes and links are assigned a weight value representing their physical properties such as capacity and delay. Here we introduce a general random diffusion (GRD) model to investigate the traffic fluctuation in weighted networks, where a random walks choice of route is affected not only by the number of links a node has, but also by the weight of individual links. We obtain analytical solutions that characterise the relation between the average traffic and the fluctuation through nodes and links. Our analysis is supported by the results of numerical simulations. We observe that the value ranges of the average traffic and the fluctuation, through nodes or links, increase dramatically with the level of heterogeneity in link weight. This highlights the key role that link weight plays in traffic fluctuation and the necessity to study traffic fluctuation on weighted networks.
Simple cellular automata models are able to reproduce the basic properties of highway traffic. The comparison with empirical data for microscopic quantities requires a more detailed description of the elementary dynamics. Based on existing cellular automata models we propose an improved discrete model incorporating anticipation effects, reduced acceleration capabilities and an enhanced interaction horizon for braking. The modified model is able to reproduce the three phases (free-flow, synchronized, and stop-and-go) observed in real traffic. Furthermore we find a good agreement with detailed empirical single-vehicle data in all phases.
We present a general framework, applicable to a broad class of random walks on complex networks, which provides a rigorous lower bound for the mean first-passage time of a random walker to a target site averaged over its starting position, the so-called global mean first-passage time (GMFPT). This bound is simply expressed in terms of the equilibrium distribution at the target, and implies a minimal scaling of the GMFPT with the network size. We show that this minimal scaling, which can be arbitrarily slow for a proper choice of highly connected target, is realized under the simple condition that the random walk is transient at the target site, and independently of the small-world, scale free or fractal properties of the network. Last, we put forward that the GMFPT to a specific target is not a representative property of the network, since the target averaged GMFPT satisfies much more restrictive bounds, which forbid any sublinear scaling with the network size.
The theory of large deviations constitutes a mathematical cornerstone in the foundations of Boltzmann-Gibbs statistical mechanics, based on the additive entropy $S_{BG}=- k_Bsum_{i=1}^W p_i ln p_i$. Its optimization under appropriate constraints yields the celebrated BG weight $e^{-beta E_i}$. An elementary large-deviation connection is provided by $N$ independent binary variables, which, in the $Ntoinfty$ limit yields a Gaussian distribution. The probability of having $n e N/2$ out of $N$ throws is governed by the exponential decay $e^{-N r}$, where the rate function $r$ is directly related to the relative BG entropy. To deal with a wide class of complex systems, nonextensive statistical mechanics has been proposed, based on the nonadditive entropy $S_q=k_Bfrac{1- sum_{i=1}^W p_i^q}{q-1}$ ($q in {cal R}; ,S_1=S_{BG}$). Its optimization yields the generalized weight $e_q^{-beta_q E_i}$ ($e_q^z equiv [1+(1-q)z]^{1/(1-q)};,e_1^z=e^z)$. We numerically study large deviations for a strongly correlated model which depends on the indices $Q in [1,2)$ and $gamma in (0,1)$. This model provides, in the $Ntoinfty$ limit ($forall gamma$), $Q$-Gaussian distributions, ubiquitously observed in nature ($Qto 1$ recovers the independent binary model). We show that its corresponding large deviations are governed by $e_q^{-N r_q}$ ($propto 1/N^{1/(q-1)}$ if $q>1$) where $q= frac{Q-1}{gamma (3-Q)}+1 ge 1$. This $q$-generalized illustration opens wide the door towards a desirable large-deviation foundation of nonextensive statistical mechanics.
We study the extreme events taking place on complex networks. The transport on networks is modelled using random walks and we compute the probability for the occurance and recurrence of extreme events on the network. We show that the nodes with smaller number of links are more prone to extreme events than the ones with larger number of links. We obtain analytical estimates and verify them with numerical simulations. They are shown to be robust even when random walkers follow shortest path on the network. The results suggest a revision of design principles and can be used as an input for designing the nodes of a network so as to smoothly handle an extreme event.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا