Do you want to publish a course? Click here

Influence of Charge Order on the Ground States of TMTTF Molecular Salts

212   0   0.0 ( 0 )
 Added by Weiqiang Yu
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

(TMTTF)2AsF6 and (TMTTF)2SbF6 are both known to undergo a charge ordering phase transition, though their ground states are different. The ground state of the first is Spin-Peierls, and the second is an antiferromagnet. We study the effect of pressure on the ground states and the charge-ordering using 13C NMR spectroscopy. The experiments demonstrate that the the CO and SP order parameters are repulsive, and consequently the AF state is stabilized when the CO order parameter is large, as it is for (TMTTF)2SbF6. An extension of the well-known temperature/pressure phase diagram is proposed.



rate research

Read More

Using one- and two-dimensional NMR spectroscopy applied to $^{13}$C spin-labeled (TMTTF)$_2$AsF$_6$ and (TMTTF)$_2$PF$_6$, we demonstrate the existence of an intermediate charge-ordered phase in the TMTTF family of charge-transfer salts. At ambient temperature, the spectra are characteristic of nuclei in equivalent environments, or molecules. Below a continuous charge-ordering transition temperature T$_{co}$, the spectra are explained by assuming there are two inequivalent molecules with unequal electron densities. The absence of an associated magnetic anomaly indicates only the charge degrees of freedom are involved and the lack of evidence for a structural anomaly suggests that charge/lattice coupling is too weak to drive the transition.
We report an ultrasonic study of the magneto-elastic coupling of the hydrogenated and deuterated (TMTTF)$_2$PF$_6$ organic salts. For both salts the temperature dependence of the longitudinal velocity along the c* axis displays a monotonic stiffening of the $C_{33}$ compressibility modulus upon cooling. Below the characteristic temperature scale 40 K the modulus stiffening becomes markedly enhanced, in concomitance with the reduction of spin degrees of freedom previously seen in magnetic measurements as low dimensional precursors of the spin-Peierls transition. The magneto-elastic coupling appears to be much weaker in the hydrogenated salt due to the highly inhomogeneous elastic behavior induced by the proximity of the charge ordering transition to the spin-Peierls phase. For the deuterated salt, an important anomaly in the ultrasound velocity is observed below the spin-Peierls transition temperature $T_{rm SP}$ in agreement with scaling of the elastic deformation with the spin-Peierls order parameter. In spite of the weakly inhomogeneous character of the spin-Peierls phase transition, the magnetic field dependence of $T_{rm SP}$ is well captured with the mean-field prediction for the lattice distorted Heisenberg spin chain.
We report a study of the 16.5 GHz dielectric function of hydrogenated and deuterated organic salts (TMTTF)$_2$PF$_6$. The temperature behavior of the dielectric function is consistent with short-range polar order whose relaxation time decreases rapidly below the charge ordering temperature. If this transition has more a relaxor character in the hydrogenated salt, charge ordering is strengthened in the deuterated one where the transition temperature has increased by more than thirty percent. Anomalies in the dielectric function are also observed in the spin-Peierls ground state revealing some intricate lattice effects in a temperature range where both phases coexist. The variation of the spin-Peierls ordering temperature under magnetic field appears to follow a mean-field prediction despite the presence of spin-Peierls fluctuations over a very wide temperature range in the charge ordered state of these salts.
Motivated by recent experimental suggestions of charge-order-driven ferroelectricity in organic charge-transfer salts, such as $kappa$-(BEDT-TTF)$_2$Cu[N(CN)$_2$]Cl, we investigate magnetic and charge-ordered phases that emerge in an extended two-orbital Hubbard model on the anisotropic triangular lattice at $3/4$ filling. This model takes into account the presence of two organic BEDT-TTF molecules, which form a dimer on each site of the lattice, and includes short-range intramolecular and intermolecular interactions and hoppings. By using variational wave functions and quantum Monte Carlo techniques, we find two polar states with charge disproportionation inside the dimer, hinting to ferroelectricity. These charge-ordered insulating phases are stabilized in the strongly correlated limit and their actual charge pattern is determined by the relative strength of intradimer to interdimer couplings. Our results suggest that ferroelectricity is not driven by magnetism, since these polar phases can be stabilized also without antiferromagnetic order and provide a possible microscopic explanation of the experimental observations. In addition, a conventional dimer-Mott state (with uniform density and antiferromagnetic order) and a nonpolar charge-ordered state (with charge-rich and charge-poor dimers forming a checkerboard pattern) can be stabilized in the strong-coupling regime. Finally, when electron-electron interactions are weak, metallic states appear, with either uniform charge distribution or a peculiar $12$-site periodicity that generates honeycomb-like charge order.
We show that the valence electrons of Ba3NaRu2O9, which has a quasi-molecular structure, completely crystallize below 210 K. Using an extended Hubbard model, we show that the charge ordering instability results from long-range Coulomb interactions. However, orbital ordering, metal-metal bonding and formation of a partial spin gap enforce the magnitude of the charge separation. The striped charge order and frustrated hcp lattice of Ru2O9 dimers lead to competition with a quasi-degenerate charge-melted phase under photo-excitation at low temperature. Our results establish a broad class of simple metal oxides as models for emergent phenomena at the border between the molecular and solid states.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا