Do you want to publish a course? Click here

Phase separation in the bosonic Hubbard model with ring exchange

153   0   0.0 ( 0 )
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show that soft core bosons in two dimensions with a ring exchange term exhibit a tendency for phase separation. This observation suggests that the thermodynamic stability of normal bose liquid phases driven by ring exchange should be carefully examined.



rate research

Read More

Ring-exchange interactions have been proposed as a possible mechanism for a Bose-liquid phase at zero temperature, a phase that is compressible with no superfluidity. Using the Stochastic Green Function algorithm (SGF), we study the effect of these interactions for bosons on a two-dimensional triangular lattice. We show that the supersolid phase, that is known to exist in the ground state for a wide range of densities, is rapidly destroyed as the ring-exchange interactions are turned on. We establish the ground-state phase diagram of the system, which is characterized by the absence of the expected Bose-liquid phase.
The phase diagram of the simplest approximation to Double-Exchange systems, the bosonic Double-Exchange model with antiferromagnetic super-exchange coupling, is fully worked out by means of Monte Carlo simulations, large-N expansions and Variational Mean-Field calculations. We find a rich phase diagram, with no first-order phase transitions. The most surprising finding is the existence of a segment like ordered phase at low temperature for intermediate AFM coupling which cannot be detected in neutron-scattering experiments. This is signaled by a maximum (a cusp) in the specific heat. Below the phase-transition, only short-range ordering would be found in neutron-scattering. Researchers looking for a Quantum Critical Point in manganites should be wary of this possibility. Finite-Size Scaling estimates of critical exponents are presented, although large scaling corrections are present in the reachable lattice sizes.
The paramagnetic phase diagram of the Hubbard model with nearest-neighbor (NN) and next-nearest-neighbor (NNN) hopping on the Bethe lattice is computed at half-filling and in the weakly doped regime using the self-energy functional approach for dynamical mean-field theory. NNN hopping breaks the particle-hole symmetry and leads to a strong asymmetry of the electron-doped and hole-doped regimes. Phase separation occurs at and near half-filling, and the critical temperature of the Mott transition is strongly suppressed.
137 - M. Yu. Kagan , D. I. Khomskii , 1998
We study the competition between different possible ground states of the double-exchange model with strong ferromagnetic exchange interaction between itinerant electrons and local spins. Both for classical and quantum treatment of the local spins the homogeneous canted state is shown to be unstable against a phase separation. The conditions for the phase separation into the mixture of the antiferromagnetic and ferromagnetic/canted states are given. We also discuss another possible realization of the phase-separated state: ferromagnetic polarons embedded into an antiferromagnetic surrounding. The general picture of a percolated state, which emerges from these considerations, is discussed and compared with results of recent experiments on doped manganaties.
We address some open questions regarding the phase diagram of the one-dimensional Hubbard model with asymmetric hopping coefficients and balanced species. In the attractive regime we present a numerical study of the passage from on-site pairing dominant correlations at small asymmetries to charge-density waves in the region with markedly different hopping coefficients. In the repulsive regime we exploit two analytical treatments in the strong- and weak-coupling regimes in order to locate the onset of phase separation at small and large asymmetries respectively.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا