Do you want to publish a course? Click here

The role of critical current on point contact Andreev Reflection spectrum between a normal metal and a superconductor

246   0   0.0 ( 0 )
 Added by Goutam Sheet
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

The point contact spectrum between a normal metal and a superconductor often shows unexpected sharp dips in the conductance at voltage values larger than the superconducting energy gap. These dips are not predicted in the Blonder-Tinkham-Klapwizk (BTK) theory, commonly used to analyse these contacts. We present here a systematic study of these dips in a variety of contacts between different combinations of a superconductor and a normal metal. From the correlation between the characteristics of these dips with the contact area, we can surmise that such dips are caused by the contact not being in the ballistic limit. An analysis of the possible errors introduced while analysing such a spectrum with the standard BTK model is also presented.



rate research

Read More

We investigate the full counting statistics of a voltage-driven normal metal(N)-superconductor(S) contact. In the low-bias regime below the superconducting gap, the NS contact can be mapped onto a purely normal contact, albeit with doubled voltage and counting fields. Hence in this regime the transport characteristics can be obtained by the corresponding substitution of the normal metal results. The elementary processes are single Andreev transfers and electron- and hole-like Andreev transfers. Considering Lorentzian voltage pulses we find an optimal quantization for half-integer Levitons.
188 - P. Pandey , R. Kraft , R. Krupke 2019
We report the study of ballistic transport in normal metal/graphene/superconductor junctions in edge-contact geometry. While in the normal state, we have observed Fabry-P{e}rot resonances suggesting that charge carriers travel ballistically, the superconducting state shows that the Andreev reflection at the graphene/superconductor interface is affected by these interferences. Our experimental results in the superconducting state have been analyzed and explained with a modified Octavio-Tinkham-Blonder-Klapwijk model taking into account the magnetic pair-breaking effects and the two different interface transparencies, textit{i.e.},between the normal metal and graphene, and between graphene and the superconductor. We show that the transparency of the normal metal/graphene interface strongly varies with doping at large scale, while it undergoes weaker changes at the graphene/superconductor interface. When a cavity is formed by the charge transfer occurring in the vicinity of the contacts, we see that the transmission probabilities follow the normal state conductance highlighting the interplay between the Andreev processes and the electronic interferometer.
We consider Andreev reflection in a two dimensional junction between a normal metal and a heavy fermion superconductor in the Fulde-Ferrell (FF) type of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state. We assume s-wave symmetry of the superconducting gap. The parameters of the superconductor: the gap magnitude, the chemical potential, and the Cooper pair center-of-mass momentum Q, are all determined self-consistently within a mean-field (BCS) scheme. The Cooper pair momentum Q is chosen as perpendicular to the junction interface. We calculate the junction conductance for a series of barrier strengths. In the case of incoming electron with spin sigma = 1 only for magnetic fields close to the upper critical field H_{c2}, we obtain the so-called Andreev window i.e. the energy interval in which the reflection probability is maximal, which in turn is indicated by a peak in the conductance. The last result differs with other non-self-consistent calculations existing in the literature.
Our previous point-contact Andreev reflection studies of the heavy-fermion superconductor CeCoIn$_5$ using Au tips have shown two clear features: reduced Andreev signal and asymmetric background conductance [1]. To explore their physical origins, we have extended our measurements to point-contact junctions between single crystalline heavy-fermion metals and superconducting Nb tips. Differential conductance spectra are taken on junctions with three heavy-fermion metals, CeCoIn$_5$, CeRhIn$_5$, and YbAl$_3$, each with different electron mass. In contrast with Au/CeCoIn$_5$ junctions, Andreev signal is not reduced and no dependence on effective mass is observed. A possible explanation based on a two-fluid picture for heavy fermions is proposed. [1] W. K. Park et al., Phys. Rev. B 72 052509 (2005); W. K. Park et al., Proc. SPIE-Int. Soc. Opt. Eng. 5932 59321Q (2005); W. K. Park et al., Physica C (in press) (cond-mat/0606535).
Crossed Andreev reflection (cAR) is a scattering process that happens in a quantum transport set-up consisting of two normal metals (NM) attached to a superconductor (SC), where an electron incident from one NM results in a hole emerging in the other. Typically, an electron tunnelling through the superconductor from one NM to the other (ET) competes with cAR and masks the signature of cAR in the conductance spectrum. We propose a novel scheme to enhance cAR, in which SC part of the NM-SC-NM is side-coupled to another SC having a different SC phase to form a Josephson junction in the transverse direction. At strong enough coupling and adequate phase difference, one can smoothly traverse between highly ET-dominant to highly cAR-dominant transport regimes by tuning chemical potential, due to the appearance of subgap Andreev states that are extended in the longitudinal direction. We also discuss connections to realistic systems.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا