Do you want to publish a course? Click here

Low-frequency Einstein mode in the zero-expansion material YbGaGe

68   0   0.0 ( 0 )
 Added by Jason C. Lashley
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

This paper was withdrawn by the authors.



rate research

Read More

314 - Y. Janssen , S. Chang , B.K. Cho 2004
We report evidence of the absence of zero thermal expansion in well-characterized high-quality polycrystalline samples of YbGaGe. High-quality samples of YbGaGe were produced from high-purity starting elements and were extensively characterized using x-ray powder diffraction, differential thermal analysis, atomic emission spectroscopy, magnetization, and neutron powder diffraction at various temperatures. Our sample melts congruently at 920 C. A small amount of Yb2O3 was found in our sample, which explains the behavior of the magnetic susceptibility. These observations rule out the scenario of electronic valence driven thermal expansion in YbGaGe. Our studies indicate that the thermal expansion of YbGaGe is comparable to that of Cu.
We investigate the effects of carbon and boron doping on the thermal expansion in the hexagonal (P63/mmc) intermetallic YbGaGe. X-ray powder diffraction was used to measure the lattice constants on pure and doped (C or B at nominal levels of 0.5 %) samples from T~10 K to T~300 K. Also measured were resistivity, specific-heat, and magnetic susceptibility. While the pure YbGaGe samples exhibit positive thermal volume expansion, (V300K-V10K)/V300K = 0.94%, the volume expansion in the lightly C and B-doped samples, contract and tend towards zero volume expansion. Such a strong response with such light doping suggests that the underlying mechanism for the reported zero volume expansion is substitutional disorder, and not the previously proposed valence fluctuations.
We use a symmetry-motivated approach to analyse neutron pair distribution function data to investigate the mechanism of negative thermal expansion (NTE) in ReO$_3$. This analysis shows that the local structure of ReO$_3$ is dominated by an in-phase octahedral tilting mode and that the octahedral units are far less flexible to scissoring type deformations than the octahedra in the related compound ScF$_3$. These results support the idea that structural flexibility is an important factor in NTE materials, allowing the phonon modes that drive a volume contraction of the lattice to occupy a greater volume in reciprocal space. The lack of flexibility in ReO$_3$ restricts the NTE-driving phonons to a smaller region of reciprocal space, limiting the magnitude and temperature range of NTE. In addition, we investigate the thermal expansion properties of the material at high temperature and do not find the reported second NTE region. Finally, we show that the local fluctuations, even at elevated temperatures, respect the symmetry and order parameter direction of the observed $P4/mbm$ high pressure phase of ReO$_3$. The result indicates that the motions associated with rigid unit modes are highly anisotropic in these systems.
135 - T. Fukuda , K. Makino , Y. Saito 2020
We report on the dynamics of coherent phonons in semimetal 1T-MoTe2 using femtosecond pump-probe spectroscopy. On an ultrafast sub-picosecond time scale at room temperature, a low frequency and long-lifetime shear phonon mode was observed at 0.39 THz, which was previously reported in the form of a characteristic phonon only in the low temperature Td-MoTe2 phase. Unlike the other optical phonon modes, the shear phonon mode was found to strongly couple with photoexcited carriers. Moreover, the amplitude of the shear mode surprisingly decreased with increasing excitation density, a phenomenon which can be attributed to be a consequence of the lattice temperature rising after excitation. These results provide useful physical information on ultrafast lattice symmetry switching between the normal semimetal 1T and the lattice inversion symmetry breaking Type-II Weyl semimetal Td phases.
The design and fabrication of robust metallic states in graphene nanoribbons (GNRs) is a significant challenge since lateral quantum confinement and many-electron interactions tend to induce electronic band gaps when graphene is patterned at nanometer length scales. Recent developments in bottom-up synthesis have enabled the design and characterization of atomically-precise GNRs, but strategies for realizing GNR metallicity have been elusive. Here we demonstrate a general technique for inducing metallicity in GNRs by inserting a symmetric superlattice of zero-energy modes into otherwise semiconducting GNRs. We verify the resulting metallicity using scanning tunneling spectroscopy as well as first-principles density-functional theory and tight binding calculations. Our results reveal that the metallic bandwidth in GNRs can be tuned over a wide range by controlling the overlap of zero-mode wavefunctions through intentional sublattice symmetry-breaking.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا