The magnetoresistivity and critical current density of well characterized Si-nanoparticle doped and undoped Cu-sheathed MgB$_{2}$ tapes have been measured at temperatures $Tgeq 28$ K in magnetic fields $Bleq 0.9$ T. The irreversibility line $B_{irr}(T)$ for doped tape shows a stepwise variation with a kink around 0.3 T. Such $B_{irr}(T)$ variation is typical for high-temperature superconductors with columnar defects (a kink occurs near the matching field $% B_{phi}$) and is very different from a smooth $B_{irr}(T)$ variation in undoped MgB$_{2}$ samples. The microstructure studies of nanoparticle doped MgB$_{2}$ samples show uniformly dispersed nanoprecipitates, which probably act as a correlated disorder. The observed difference between the field variations of the critical current density and pinning force density of the doped and undoped tape supports the above findings.