We have measured the nonlinear response to the ac magnetic field in the superconducting weak ferromagnet Ru-1222, at different regimes of sample cooling which provides unambiguous evidence of the interplay of the domain structure and the vorticity in the superconducting state. This is {em direct} proof of coexistence of ferromagnetic and superconductive order parameters in high-$T_c$ ruthenocuprates.
Using Scanning Tunneling Microscope at low temperature we explore the superconducting phase diagram in the $pi$-band of the two-band superconductor MgB$_2$. In this band the peculiar shape of the local tunneling spectra and their dynamics in the magnetic field reveal the complex character of the quasiparticle density of states (DOS). The gap in the DOS is first rapidly filled with states in raising the magnetic field up to 0.5 T and then slowly approaches the normal state value : The gap is observed up to 2 T. Such a change in the DOS dynamics suggests the existence of two terms in the DOS of the $pi$-band: a first one, reflecting an intrinsic superconductivity in the band and a second one, originating from an inter-band coupling to the $sigma$-band. Our findings allow a deeper understanding of the unique phase diagram of MgB$_2$.
We calculate the density of states of an inhomogeneous superconductor in a magnetic field where the positions of vortices are distributed completely at random. We consider both the cases of s-wave and d-wave pairing. For both pairing symmetries either the presence of disorder or increasing the density of vortices enhances the low energy density of states. In the s-wave case the gap is filled and the density of states is a power law at low energies. In the d-wave case the density of states is finite at zero energy and it rises linearly at very low energies in the Dirac isotropic case (alpha_D=t/Delta_0=1, where t is the hopping integral and Delta_0 is the amplitude of the order parameter). For slightly higher energies the density of states crosses over to a quadratic behavior. As the Dirac anisotropy increases (as Delta_0 decreases with respect to the hopping term) the linear region decreases in width. Neglecting this small region the density of states interpolates between quadratic and back to linear as alpha_D increases. The low energy states are strongly peaked near the vortex cores.
In superconducting ferromagnets for which the Curie temperature $T_{m}$ exceeds the superconducting transition temperature $T_{c}$, it was suggested that ferromagnetic spin fluctuations could lead to superconductivity with p-wave spin triplet Cooper pairing. Using the Stoner model of itinerant ferromagnetism, we study the feedback effect of the p-wave superconductivity on the ferromagnetism. Below $T_{c}$, the ferromagnetism is enhanced by the p-wave superconductivity. At zero temperature, the critical Stoner value for itinerant ferromagnetism is reduced by the strength of the p-wave pairing potential, and the magnetization increases correspondingly. More important, our results suggest that once Stoner ferromagnetism is established, $T_m$ is unlikely to ever be below $T_c$. For strong and weak ferromagnetism, three and two peaks in the temperature dependence of the specific heat are respectively predicted, the upper peak in the latter case corresponding to a first-order transition.
We describe an experimental protocol to characterize magnetic field dependent microwave losses in superconducting niobium microstrip resonators. Our approach provides a unified view that covers two well-known magnetic field dependent loss mechanisms: quasiparticle generation and vortex motion. We find that quasiparticle generation is the dominant loss mechanism for parallel magnetic fields. For perpendicular fields, the dominant loss mechanism is vortex motion or switches from quasiparticle generation to vortex motion, depending on cooling procedures. In particular, we introduce a plot of the quality factor versus the resonance frequency as a general method for identifying the dominant loss mechanism. We calculate the expected resonance frequency and the quality factor as a function of the magnetic field by modeling the complex resistivity. Key parameters characterizing microwave loss are estimated from comparisons of the observed and expected resonator properties. Based on these key parameters, we find a niobium resonator whose thickness is similar to its penetration depth is the best choice for X-band electron spin resonance applications. Finally, we detect partial release of the Meissner current at the vortex penetration field, suggesting that the interaction between vortices and the Meissner current near the edges is essential to understand the magnetic field dependence of the resonator properties.
Inelastic neutron scattering measurements on the archetypical electron-doped material Nd{1.85}Ce{0.15}CuO4 up to high relative magnetic field strength, H/Hc2 ~ 50%, reveal a simple linear magnetic-field effect on the superconducting magnetic gap and the absence of field-induced in-gap states. The extrapolated gap-closing field value is consistent with the upper critical field Hc2, and the high-field response resembles that of the paramagnetic normal state.
Grigory I. Leviev
,Menachem I. Tsindlekht
,Edouard B. Sonin
.
(2003)
.
"The internal magnetic field in superconducting ferromagnets"
.
Menachem Tsindlekht
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا