Do you want to publish a course? Click here

Asymmetric Exclusion Model and Weighted Lattice Paths

168   0   0.0 ( 0 )
 Added by Richard Brak
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show that the known matrix representations of the stationary state algebra of the Asymmetric Simple Exclusion Process (ASEP) can be interpreted combinatorially as various weighted lattice paths. This interpretation enables us to use the constant term method (CTM) and bijective combinatorial methods to express many forms of the ASEP normalisation factor in terms of Ballot numbers. One particular lattice path representation shows that the coefficients in the recurrence relation for the ASEP correlation functions are also Ballot numbers. Additionally, the CTM has a strong combinatorial connection which leads to a new ``canonical lattice path representation and to the ``omega-expansion which provides a uniform approach to computing the asymptotic behaviour in the various phases of the ASEP. The path representations enable the ASEP normalisation factor to be seen as the partition function of a more general polymer chain model having a two parameter interaction with a surface.



rate research

Read More

138 - Dominik Lips , Artem Ryabov , 2018
We study the driven Brownian motion of hard rods in a one-dimensional cosine potential with an amplitude large compared to the thermal energy. In a closed system, we find surprising features of the steady-state current in dependence of the particle density. The form of the current-density relation changes greatly with the particle size and can exhibit both a local maximum and minimum. The changes are caused by an interplay of a barrier reduction, blocking and exchange symmetry effect. The latter leads to a current equal to that of non-interacting particles for a particle size commensurate with the period length of the cosine potential. For an open system coupled to particle reservoirs, we predict five different phases of non-equilibrium steady states to occur. Our results show that the particle size can be of crucial importance for non-equilibrium phase transitions in driven systems. Possible experiments for demonstrating our findings are pointed out.
562 - Sarah A. Nowak , Pak-Wing Fok , 2007
We investigate the dynamics of a one-dimensional asymmetric exclusion process with Langmuir kinetics and a fluctuating wall. At the left boundary, particles are injected onto the lattice; from there, the particles hop to the right. Along the lattice, particles can adsorb or desorb, and the right boundary is defined by a wall particle. The confining wall particle has intrinsic forward and backward hopping, a net leftward drift, and cannot desorb. Performing Monte Carlo simulations and using a moving-frame finite segment approach coupled to mean field theory, we find the parameter regimes in which the wall acquires a steady state position. In other regimes, the wall will either drift to the left and fall off the lattice at the injection site, or drift indefinitely to the right. Our results are discussed in the context of non-equilibrium phases of the system, fluctuating boundary layers, and particle densities in the lab frame versus the frame of the fluctuating wall.
The transfer matrix and matrix multiplication ansatz, when applied to nonequilibrium steady states in asymmetric exclusion processed and traffic models, has given many exact results for phase diagrams, bulk densities and fluxes, as well as density profiles and spatial and temporal correlation functions for models with a dynamics that is updated in (random) sequential and sublattice-parallel order. Here we consider fully parallel or synchronous dynamics, for which only partial results are known, due to the appearance of complicated strong short range correlations, that invalidate simple mean field approximations. This paper is based on two new ingredients: (i) a microscopic characterization of order parameters and local configurations in the relevant phases, based on the microdynamics of the model, and (ii) an improved mean field approximation, which neglects certain four point - and higher order correlation functions. It is conjectured that the density profiles, obtained here, are exact up to terms that are exponentially small in the system size.
We study the nonequilibrium steady states in asymmetric exclusion processes (TASEP) with open boundary conditions having spatially inhomogeneous hopping rates. Assuming spatially smoothly varying hopping rates with a few (or no) discontinuities, we show that the steady states are in general classified by the steady state currents in direct analogy with open TASEPs having uniform hopping rates. We calculate the steady state density profiles, which are now space-dependent. We also obtain the phase diagrams in the plane of the control parameters, which though have phase boundaries that are in general curved lines, have the same topology as their counterparts for conventional open TASEPs, independent of the form of the hopping rate functions. This reveals a type of universality, not encountered in critical phenomena.
We revisit the totally asymmetric simple exclusion process with open boundaries (TASEP), focussing on the recent discovery by de Gier and Essler that the model has a dynamical transition along a nontrivial line in the phase diagram. This line coincides neither with any change in the steady-state properties of the TASEP, nor the corresponding line predicted by domain wall theory. We provide numerical evidence that the TASEP indeed has a dynamical transition along the de Gier-Essler line, finding that the most convincing evidence was obtained from Density Matrix Renormalisation Group (DMRG) calculations. By contrast, we find that the dynamical transition is rather hard to see in direct Monte Carlo simulations of the TASEP. We furthermore discuss in general terms scenarios that admit a distinction between static and dynamic phase behaviour.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا