Do you want to publish a course? Click here

Structure formation in binary colloids

111   0   0.0 ( 0 )
 Added by Ferenc Kun
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

A theoretical study of the structure formation observed very recently [Phys. Rev. Lett. 90, 128303 (2003)] in binary colloids is presented. In our model solely the dipole-dipole interaction of the particles is considered, electrohidrodynamic effects are excluded. Based on molecular dynamics simulations and analytic calculations we show that the total concentration of the particles, the relative concentration and the relative dipole moment of the components determine the structure of the colloid. At low concentrations the kinetic aggregation of particles results in fractal structures which show a crossover behavior when increasing the concentration. At high concentration various lattice structures are obtained in a good agreement with experiments.



rate research

Read More

We report that binary dispersions of like-charged colloidal particles with large charge asymmetry but similar size exhibit phase separation into crystal and fluid phases under very low salt conditions. This is unexpected because the effective colloid-colloid pair interactions are accurately described by a Yukawa model which is stable to demixing. We show that colloid-ion interactions provide an energetic driving force for phase separation, which is initiated by crystallization of one species.
Responsive particles, such as biomacromolecules or hydrogels, display a broad and polymodal distribution of conformations and have thus the ability to change their properties (e.g, size, shape, charge density, etc.) substantially in response to external fields or to their local environment (e.g., mediated by cosolutes or pH). Here, we discuss the basic statistical mechanics for a model of responsive colloids (RCs) by introducing an additional property degree of freedom as a collective variable in a formal coarse-graining procedure. The latter leads to an additional one-body term in the coarse-grained (CG) free energy, defining a single-particle property distribution for an individual polydisperse RC. We argue that in the equilibrium thermodynamic limit such a CG system of RCs behaves like a conventional polydisperse system of non-responsive particles. We then illustrate the action of external fields, which impose local (position-dependent) property distributions leading to non-trivial effects on the spatial one-body property and density profiles, even for an ideal (non-interacting) gas of RCs. We finally apply density functional theory in the local density approximation (LDA-DFT) to discuss the effects of particle interactions for specific examples of i) a suspension of RCs in an external field linear in both position and property, ii) a suspension of RCs with highly localized properties (sizes) confined between two walls, and iii) a two-component suspension where an inhomogeneously distributed (non-responsive) cosolute component, as found, e.g., in the studies of osmolyte- or salt-induced collapse/swelling transitions of thermosensitive polymers, modifies the local properties and density of the RC liquid.
Spontaneous liquid-liquid phase separation is commonly understood in terms of phenomenological mean-field theories. These theories correctly predict the structural features of the fluid at sufficiently long time scales and wavelengths. However, these conditions are not met in various examples in biology and materials science where the mixture is slowly destabilised, and phase separation takes place close to the critical point. Using kinetic Monte Carlo and molecular dynamics simulations of a binary surface fluid under these conditions, we show that the characteristic length scale of the emerging structure decreases, in 2D, with the 4/15 dynamic critical exponent of the quench rate rather than the mean-field 1/6th power. Hence, the dynamics of cluster formation governed by thermodynamically undriven Brownian motion is much more sensitive on the rate of destabilisation than expected from mean-field theory. We discuss the expected implications of this finding to 3D systems with ordering liquid crystals, as well as phase-separating passive or active particles.
177 - S. Boettcher 2009
The far-from-equilibrium dynamics of glassy systems share important phenomenological traits. A transition is generally observed from a time-homogeneous dynamical regime to an aging regime where physical changes occur intermittently and, on average, at a decreasing rate. It has been suggested that a global change of the independent time variable to its logarithm may render the aging dynamics homogeneous: for colloids, this entails diffusion but on a logarithmic time scale. Our novel analysis of experimental colloid data confirms that the mean square displacement grows linearly in time at low densities and shows that it grows linearly in the logarithm of time at high densities. Correspondingly, pairs of particles initially in close contact survive as pairs with a probability which decays exponentially in either time or its logarithm. The form of the Probability Density Function of the displacements shows that long-ranged spatial correlations are very long-lived in dense colloids. A phenomenological stochastic model is then introduced which relies on the growth and collapse of strongly correlated clusters (dynamic heterogeneity), and which reproduces the full spectrum of observed colloidal behaviors depending on the form assumed for the probability that a cluster collapses during a Monte Carlo update. In the limit where large clusters dominate, the collapse rate is ~1/t, implying a homogeneous, log-Poissonian process that qualitatively reproduces the experimental results for dense colloids. Finally an analytical toy-model is discussed to elucidate the strong dependence of the simulation results on the integrability (or lack thereof) of the cluster collapse probability function.
We use field emission scanning electron microscope (FE-SEM) to investigate the growth of palladium colloids over the surface of thin films of WO3/glass. The film is prepared by Pulsed Laser Deposition (PLD) at different temperatures. A PdCl2 (aq) droplet is injected on the surface and in the presence of steam hydrogen the droplet is dried through a reduction reaction process. Two distinct aggregation regimes of palladium colloids are observed over the substrates. We argue that the change in aggregation dynamics emerges when the measured water drop Contact Angel (CA) for the WO3/glass thin films passes a certain threshold value, namely CA = 46 degrees, where a crossover in kinetic aggregation of palladium colloids occurs. Our results suggest that the mass fractal dimension of palladium aggregates follows a power-law behavior. The fractal dimension (Df) in the fast aggregation regime, where the measured CA values vary from 27 up to 46 degrees, according to different substrate deposition temperatures, is Df = 1.75 (0.02). This value of Df is in excellent agreement with kinetic aggregation of other colloidal systems in fast aggregation regime. Whereas for the slow aggregation regime, with CA = 58 degrees, the fractal dimension changes abruptly to Df=1.92 (0.03). We have also used a modified Box-Counting method to calculate fractal dimension of gray-level images and observe that the crossover at around CA = 46 degrees remains unchanged.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا