No Arabic abstract
Using resonantly excited photoluminescence along with photoluminescence excitation spectroscopies, we study the carrier excitation processes in CdTe/ZnTe and CdSe/ZnSe self-assembled quantum dots. Photoluminescence excitation spectra of single CdTe quantum dots reflect two major mechanisms for carrier excitation: The first, associated with the presence of sharp and intense lines in the spectrum, is a direct excited state ? ground state transition. The second, associated with the appearance of up to four much broader excitation lines, is a LO phonon-assisted absorption directly into the quantum dot ground states. LO phonons with energies of both quantum dots and ZnTe barrier material are identified in the photoluminescence excitation spectra. Resonantly excited PL measurements for the dot ensemble as a function of excitation energy makes it possible to separate the contributions of these two mechanisms. We find that for CdTe quantum dots the distribution of excited states coupled to the ground states reflects the energy distribution of the quantum dot emission, but shifted up in energy by 100 meV. This large splitting between excited and ground states in CdTe quantum dots suggests strong spatial confinement. In contrast, the LO phonon-assisted absorption shows significant size selectivity. In the case of CdTe dots the exciton-LO phonon coupling is strongly enhanced for smaller-sized dots which have higher emission energies. In contrast, for CdSe quantum dots the exciton-LO phonon coupling is uniform over the ensemble ? that is, the energy distribution determines the intensities of LO phonon replicas. We show that for CdTe quantum dots after annealing, that is after an increase in the average dot size, the exciton-LO phonon interaction reflects the dot energy distribution, as observed for CdSe quantum dots.
We study the exciton spin relaxation in CdTe self-assembled quantum dots by using polarized photoluminescence spectroscopy in magnetic field. The experiments on single CdTe quantum dots and on large quantum dot ensembles show that by combining phonon-assisted absorption with circularly polarized resonant excitation the spin-polarized excitons are photo-excited directly into the ground states of quantum dots. We find that for single symmetric quantum dots at B=0 T, where the exciton levels are degenerate, the spins randomize very rapidly, so that no net spin polarization is observed. In contrast, when this degeneracy is lifted by applying external magnetic field, optically created spin-polarized excitons maintain their polarization on a time scale much longer than the exciton recombination time. We also observe that the exciton spin polarization is conserved when the splitting between exciton states is caused by quantum dot shape asymmetry. Similar behavior is found in a large ensemble of CdTe quantum dots. These results show that while exciton spins scatter rapidly between degenerate states, the spin relaxation time increases by orders of magnitude as the exciton spin states in a quantum dot become non-degenerate. Finally, due to strong electronic confinement in CdTe quantum dots, the large spin polarization of excitons shows no dependence on the number of phonons emitted between the virtual state and the exciton ground state during the excitation.
We report on the experimental observation of a hitherto ignored long-range electromagnetic coupling between self-assembled quantum dots. A 12 times enhancement of the quantum dot exciton lifetime is observed by means of time-resolved differential reflection spectroscopy. The enhancement is explained by utilizing and extending the local field effects as developed in emph{Phys. Rev. B textbf{64},125326 (2001)}. The electromagnetic coupling of the quantum dots results in a collective polarizability, and is observed as a suppression of the emission rate. Our results reveal that the coupling is established over a distance exceeding 490 nm. Moreover, the mutual coupling strength is optically tuned by varying the pump excitation density and enables us to optically tune the exciton lifetime.
We show that two major carrier excitation mechanisms are present in II-VI self-assembled quantum dots. The first one is related to direct excited state - ground state transition. It manifests itself by the presence of sharp and intense lines in the excitation spectrum measured from single quantum dots. Apart from these lines, we also observe up to four much broader excitation lines. The energy spacing between these lines indicates that they are associated with absorption related to longitudinal optical phonons. By analyzing resonantly excited photoluminescence spectra, we are able to separate the contributions from these two mechanisms. In the case of CdTe dots, the excited state - ground state relaxation is important for all dots in ensemble, while phonon - assisted processes are dominant for the dots with smaller lateral size.
Self-assembled hybrid perovskite quantum wells have attracted attention due to their tunable emission properties, ease of fabrication and device integration. However, the dynamics of excitons in these materials, especially how they couple to phonons remains an open question. Here, we investigate two widely used materials, namely butylammonium lead iodide $(CH_3(CH_2)3NH_3)2PbI_4$ and hexylammonium lead iodide $(CH_3(CH_2)5NH_3)2PbI_4$, both of which exhibit broad photoluminescence tails at room temperature. We performed femtosecond vibrational spectroscopy to obtain a real-time picture of the exciton phonon interaction and directly identified the vibrational modes that couple to excitons. We show that the choice of the organic cation controls which vibrational modes the exciton couples to. In butylammonium lead iodide, excitons dominantly couple to a 100 cm-1 phonon mode, whereas in hexylammonium lead iodide, excitons interact with phonons with frequencies of 88 cm-1 and 137 cm-1. Using the determined optical phonon energies, we analyzed PL broadening mechanisms. At low temperatures (<100 K), the broadening is due to acoustic phonon scattering, whereas at high temperatures, LO phonon-exciton coupling is the dominant mechanism. Our results help explain the broad photoluminescence lineshapes observed in hybrid perovskite quantum wells and provide insights into the mechanism of exciton-phonon coupling in these materials.
We demonstrate that resonant excitation of CdMnTe self-assembled quantum dots creates an ensemble of spin-polarized magnetic polarons at B=0 T. The strong spatial confinement characteristic of quantum dots significantly increases the stability of magnetic polarons so that the optically induced spin alignment is observed for temperatures > 120 K.