Do you want to publish a course? Click here

Effects of the crystal structure in the dynamical electron density-response of hcp transition metals

69   0   0.0 ( 0 )
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an all-electron study of the dynamical density-response function of hexagonal close-packed transition metals Sc and Ti. We elucidate various aspects of the interplay between the crystal structure and the electron dynamics by investigating the loss function, and the associated dielectric function, for wave-vector transfers perpendicular and parallel to the hexagonal plane. As expected, but contrary to recent work, we find that the free-electron-like aspects of the dynamical response are rather isotropic for small wave vectors. The crystal local-field effects are found to have an impact on the plasmon energy for small wave vectors, which gives rise to an interplay with the exchange-correlation effects built into the many-body kernel. The loss function lineshape shows a significant dependence on propagation direction; in particular, for propagation on the hexagonal plane the plasmon hybridizes substantially with fine structure due to d-electron transitions, and its dispersion curve becomes difficult to establish, beyond the small wave vector limit. The response is calculated in the framework of time-dependent density functional theory (TDDFT), based on a full-potential linearized augmented-plane-wave (LAPW) ground-state, in which the exchange-correlation effects are treated in the local-density approximation.



rate research

Read More

The optical response functions and band structures of LiCoO$_2$ are studied at different levels of approximation, from density functional theory (DFT) in the generalized gradient approximation (GGA) to quasiparticle self-consistent QS$GW$ (with $G$ for Greens function and $W$ for screened Coulomb interaction) without and with ladder diagrams (QS$Ghat W$) and the Bethe Salpeter Equation (BSE) approach. The QS$GW$ method is found to strongly overestimate the band gap and electron-hole or excitonic effects are found to be important. They lower the quasiparticle gap by only about 11~% but the lowest energy peaks in absorption are found to be excitonic in nature. The contributions from different band to band transitions and the relation of excitons to band-to-band transitions are analyzed. The excitons are found to be strongly localized. A comparison to experimental data is presented.
Accurate low-order structure factors (Fg) measured by quantitative convergent beam electron diffraction (QCBED) were used for validation of different density functional theory (DFT) approximations. 23 low-order Fg were measured by QCBED for the transition metals Cr, Fe, Co, Ni, and Cu, and the transition metal based intermetallic phases {gamma}-TiAl, {beta}-NiAl and {gamma}1-FePd using a multi-beam off-zone axis (MBOZA) method and then compared with Fg calculated ab-initio by DFT using the local spin density approximation (LDA) and LDA+U, and different generalized gradient approximations (GGA) functionals. Different functionals perform very differently for different materials and crystal structures. Among the GGA functionals, PW91 and EV93 achieve the best overall agreement with the experimentally determined low-order Fg for the five metals, while PW91 performs the best for the three intermetallics. The LDA+U approach, through careful selection of U, achieves excellent matches with the experimentally measured Fg for all the metallic systems investigated in this paper. Similar to the band gap for semiconductors, it is proposed that experimentally determined low-order Fg can be used to tune the U term in LDA+U method DFT calculations for metals and intermetallics.
The quasiparticle band structures of 3d transition metals, ferromagnetic Fe, Ni and paramagnetic Cu, are calculated by the GW approximation. The width of occupied 3d valence band, which is overestimated in the LSDA, is in good agreement with experimental observation. However the exchange splitting and satellite in spectra are not reproduced and it is required to go beyond the GW approximation. The effects of static screening and dynamical correlation are discussed in detail in comparison with the results of the static COHSEX approximation. The dynamical screening effects are important for band width narrowing.
The pressure induced bcc to hcp transition in Fe has been investigated via ab-initio electronic structure calculations. It is found by the disordered local moment (DLM) calculations that the temperature induced spin fluctuations result in the decrease of the energy of Burgers type lattice distortions and softening of the transverse $N$-point $TA_1$ phonon mode with $[bar{1}10]$ polarization. As a consequence, spin disorder in an system leads to the increase of the amplitude of atomic displacements. On the other hand, the exchange coupling parameters obtained in our calculations strongly decrease at large amplitude of lattice distortions. This results in a mutual interrelation of structural and magnetic degrees of freedom leading to the instability of the bcc structure under pressure at finite temperature.
We discover that hcp phases of Fe and Fe0.9Ni0.1 undergo an electronic topological transition at pressures of about 40 GPa. This topological change of the Fermi surface manifests itself through anomalous behavior of the Debye sound velocity, c/a lattice parameter ratio and Mossbauer center shift observed in our experiments. First-principles simulations within the dynamic mean field approach demonstrate that the transition is induced by many-electron effects. It is absent in one-electron calculations and represents a clear signature of correlation effects in hcp Fe.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا