Do you want to publish a course? Click here

The degenerate 3-band Hubbard model with anti-Hunds rule interactions; a model for AxC60

58   0   0.0 ( 0 )
 Added by Mats Granath
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider the orbitally degenerate 3-band Hubbard model with on-site interactions which favor low spin and low orbital angular momentum using standard second order perturbation theory in the large Hubbard-U limit. At even integer filling this model is a Mott insulator with a non-degenerate ground state that allows for a simple description of particle-hole excitations as well as gapped spin and orbital modes. We find that the Mott gap is generally indirect and that the single particle spectrum at low doping reappears close to even filling but rescaled by a factor 2/3 or 1/3. The model captures the basic phenomenology of the Mott insulating and metallic fullerides AxC60. This includes the existence of a smaller spin gap and larger charge gap at even integer filling, the fact that odd integer stoichiometries are generally metallic while even are insulating, as well as the rapid suppression of the density of states and superconducting transition temperatures with doping away from x=3.



rate research

Read More

The repulsive Hubbard model has been immensely useful in understanding strongly correlated electron systems, and serves as the paradigmatic model of the field. Despite its simplicity, it exhibits a strikingly rich phenomenology which is reminiscent of that observed in quantum materials. Nevertheless, much of its phase diagram remains controversial. Here, we review a subset of what is known about the Hubbard model, based on exact results or controlled approximate solutions in various limits, for which there is a suitable small parameter. Our primary focus is on the ground state properties of the system on various lattices in two spatial dimensions, although both lower and higher dimensions are discussed as well. Finally, we highlight some of the important outstanding open questions.
98 - Y. Ono , K. Sano 2003
We study a two-band Hubbard model using the dynamical mean-field theory combined with the exact diagonalization method. At the electron density $n=2$, a transition from a band-insulator to a correlated semimetal occurs when the on-site Coulomb interaction $U$ is varied for a fixed value of the charge-transfer energy $Delta$. At low temperature, the correlated semimetal shows ferromagnetism or superconductivity. With increasing doping $|n-2|$, the ferromagnetic transition temperature rapidly decreases and finally becomes zero at a critical value of $n$. The second-order phase transition occurs at high temperature, while a phase separation of ferromagnetic and paramagnetic states takes place at low temperature. The superconducting transition temperature gradually decreases and finally becomes zero near $n=1$ ($n=3$) where the system is Mott insulator which shows antiferromagnetism at low temperature.
We carry out a detailed numerical study of the three-band Hubbard model in the underdoped region both in the hole- as well as in the electron-doped case by means of the variational cluster approach. Both the phase diagram and the low-energy single-particle spectrum are very similar to recent results for the single-band Hubbard model with next-nearest-neighbor hoppings. In particular, we obtain a mixed antiferromagnetic+superconducting phase at low doping with a first-order transition to a pure superconducting phase accompanied by phase separation. In the single-particle spectrum a clear Zhang-Rice singlet band with an incoherent and a coherent part can be seen, in which holes enter upon doping around $(pi/2,pi/2)$. The latter is very similar to the coherent quasi-particle band crossing the Fermi surface in the single-band model. Doped electrons go instead into the upper Hubbard band, first filling the regions of the Brillouin zone around $(pi,0)$. This fact can be related to the enhanced robustness of the antiferromagnetic phase as a function of electron doping compared to hole doping.
We explore the ground-state properties of the two-band Hubbard model with degenerate electronic bands, parametrized by nearest-neighbor hopping $t$, intra- and inter-orbital on-site Coulomb repulsions $U$ and $U^prime$, and Hund coupling $J$, focusing on the case with $J>0$. Using Jastrow-Slater wave functions, we consider both states with and without magnetic/orbital order. Electron pairing can also be included in the wave function, in order to detect the occurrence of superconductivity for generic electron densities $n$. When no magnetic/orbital order is considered, the Mott transition is continuous for $n=1$ (quarter filling); instead, at $n=2$ (half filling), it is first order for small values of $J/U$, while it turns out to be continuous when the ratio $J/U$ is increased. A significant triplet pairing is present in a broad region around $n=2$. By contrast, singlet superconductivity (with $d$-wave symmetry) is detected only for small values of the Hund coupling and very close to half filling. When including magnetic and orbital order, the Mott insulator acquires antiferromagnetic order for $n=2$; instead, for $n=1$ the insulator has ferromagnetic and antiferro-orbital orders. In the latter case, a metallic phase is present for small values of $U/t$ and the metal-insulator transition becomes first order. In the region with $1<n<2$, we observe that ferromagnetism (with no orbital order) is particularly robust for large values of the Coulomb repulsion and that triplet superconductivity is strongly suppressed by the presence of antiferromagnetism. The case with $J=0$, which has an enlarged SU(4) symmetry due to the interplay between spin and orbital degrees of freedom, is also analyzed.
We determine the ground-state phase diagram of the three-band Hubbard model across a range of model parameters using density matrix embedding theory. We study the atomic-scale nature of the antiferromagnetic (AFM) and superconducting (SC) orders, explicitly including the oxygen degrees of freedom. All parametrizations of the model display AFM and SC phases, but the decay of AFM order with doping is too slow compared to the experimental phase diagram, and further, coexistence of AFM and SC orders occurs in all parameter sets. The local magnetic moment localizes entirely at the copper sites. The magnetic phase diagram is particularly sensitive to $Delta_{pd}$ and $t_{pp}$, and existing estimates of the charge transfer gap $Delta_{pd}$ appear too large in so-called minimal model parametrizations. The electron-doped side of the phase diagram is qualitatively distinct from hole-doped side and we find an unusual two-peak structure in the SC in the full model parametrization. Examining the SC order at the atomic scale, within the larger scale $d_{x^2 - y^2}$-wave SC pairing order between Cu-Cu and O-O, we also observe a local $p_{x (y)}$ [or $d_{xz (yz)}$]-symmetry modulation of the pair density on the Cu-O bonds. Our work highlights some of the features that arise in a three-band versus one-band picture, the role of the oxygen degrees of freedom in new kinds of atomic-scale SC orders, and the necessity of re-evaluating current parametrizations of the three-band Hubbard model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا