Do you want to publish a course? Click here

Photoelasticity of crystalline and amorphous silica from first principles

62   0   0.0 ( 0 )
 Added by Marco Bernasconi
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

Based on density-functional perturbation theory we have computed from first principles the photoelastic tensor of few crystalline phases of silica at normal conditions and high pressure (quartz, $alpha$-cristobalite, $beta$-cristobalite) and of models of amorphous silica (containig up to 162 atoms), obtained by quenching from the melt in combined classical and Car-Parrinello molecular dynamics simulations. The computational framework has also been checked on the photoelastic tensor of crystalline silicon and MgO as prototypes of covalent and ionic systems. The agreement with available experimental data is good. A phenomenological model suitable to describe the photoelastic properties of different silica polymorphs is devised by fitting on the ab-initio data.



rate research

Read More

Based on density-functional perturbation theory we have computed the photoelastic tensor of a model of sodium silicate glass of composition (Na$_2$O)$_{0.25}$(SiO$_2$)$_{0.75}$ (NS3). The model (containig 84 atoms) is obtained by quenching from the melt in combined classical and Car-Parrinello molecular dynamics simulations. The calculated photoelastic coefficients are in good agreement with experimental data. In particular, the calculation reproduces quantitatively the decrease of the photoelastic response induced by the insertion of Na, as measured experimentally. The extension to NS3 of a phenomenological model developed in a previous work for pure a-SiO$_2$ indicates that the modulation upon strain of other structural parameters besides the SiOSi angles must be invoked to explain the change in the photoelstic response induced by Na.
The band offsets between crystalline and hydrogenated amorphous silicon (a-Si:H) are key parameters governing the charge transport in modern silicon hetrojunction solar cells. They are an important input for macroscopic simulators that are used to further optimize the solar cell. Past experimental studies, using X-ray photoelectron spectroscopy (XPS) and capacitance-voltage measurements, have yielded conflicting results on the band offset. Here we present a computational study on the band offsets. It is based on atomistic models and density-functional theory (DFT). The amorphous part of the interface is obtained by relatively long DFT first-principles molecular-dynamics (MD) runs at an elevated temperature on 30 statistically independent samples. In order to obtain a realistic conduction band position the electronic structure of the interface is calculated with a hybrid functional. We find a slight asymmetry in the band offsets, where the offset in the valence band (0.30 eV) is larger than in the conduction band (0.17 eV). Our results are in agreement with the latest XPS measurements that report a valence band offset of 0.3 eV [M. Liebhaber et al., Appl. Phys. Lett. 106, 031601 (2015)].
We use textit{ab initio} molecular dynamics simulations to investigate the properties of the dry surface of pure silica and sodium silicate glasses. The surface layers are defined based on the atomic distributions along the direction ($z-$direction) perpendicular to the surfaces. We show that these surfaces have a higher concentration of dangling bonds as well as two-membered (2M) rings than the bulk samples. Increasing concentration of Na$_2$O reduces the proportion of structural defects. From the vibrational density of states, one concludes that 2M rings have a unique vibrational signature at a frequency $approx850$~cm$^{-1}$, compatible with experimental findings. We also find that, due to the presence of surfaces, the atomic vibration in the $z-$direction is softer than for the two other directions. The electronic density of states shows clear the differences between the surface and interior and we can attribute these to specific structural units. Finally, the analysis of the electron localization function allows to get insight on the influence of local structure and the presence of Na on the nature of chemical bonding in the glasses.
We discuss the efficacy of evolutionary method for the purpose of structural analysis of amorphous solids. At present ab initio molecular dynamics (MD) based melt-quench technique is used and this deterministic approach has proven to be successful to study amorphous materials. We show that a stochastic approach motivated by Darwinian evolution can also be used to simulate amorphous structures. Applying this method, in conjunction with density functional theory (DFT) based electronic, ionic and cell relaxation, we re-investigate two well known amorphous semiconductors, namely silicon and indium gallium zinc oxide (IGZO). We find that characteristic structural parameters like average bond length and bond angle are within $sim$ 2% to those reported by ab initio MD calculations and experimental studies.
308 - Matthieu Wyart 2008
Glasses have a large excess of low-frequency vibrational modes in comparison with continuous elastic body, the so-called Boson Peak, which appears to correlate with several crucial properties of glasses, such as transport or fragility. I review recent results showing that the Boson Peak is a necessary consequence of the weak connectivity of the solid. I explain why in assemblies repulsive spheres the boson peak shifts up to zero frequency as the pressure is lowered toward the jamming threshold, and derive the corresponding exponent. I show how these ideas capture the main low-frequency features of the vibrational spectrum of amorphous silica. These results extend arguments of Phillips on the presence of floppy modes in under-constrained covalent networks to glasses where the covalent network is rigid, or when interactions are purely radial.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا