Do you want to publish a course? Click here

Normal-state conductivity in underdoped La_{2-x}Sr_xCuO_4 thin films: Search for nonlinear effects related to collective stripe motion

104   0   0.0 ( 0 )
 Added by Alexander Lavrov
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report a detailed study of the electric-field dependence of the normal-state conductivity in La_{2-x}Sr_xCuO_4 thin films for two concentrations of doped holes, x=0.01 and 0.06, where formation of diagonal and vertical charged stripes was recently suggested. In order to elucidate whether high electric fields are capable of depinning the charged stripes and inducing their collective motion, we have measured current-voltage characteristics for various orientations of the electric field with respect to the crystallographic axes. However, even for the highest possible fields (~1000 V/cm for x=0.01 and ~300 V/cm for x=0.06) we observed no non-linear-conductivity features except for those related to the conventional Joule heating of the films. Our analysis indicates that Joule heating, rather than collective electron motion, may also be responsible for the non-linear conductivity observed in some other 2D transition-metal oxides as well. We discuss that a possible reason why moderate electric fields fail to induce a collective stripe motion in layered oxides is that fairly flexible and compressible charged stripes can adjust themselves to the crystal lattice and individual impurities, which makes their pinning much stronger than in the case of conventional rigid charge-density waves.



rate research

Read More

The contribution of superconducting fluctuations to the conductivity, or paraconductivity is studied in the underdoped regime of $La_{2-x}Sr_xCuO_4$ cuprates. A perpendicular magnetic field up to 50 T is applied to suppress the superconductivity and obtain the normal state resistivity which is then used to calculate the paraconductivity. Surprisingly enough, it is consistent with a two-dimensional Aslamazov-Larkin (AL) regime of Gaussian fluctuations close to the critical temperature. At higher temperature, the paraconductivity shows a power-law decrease in temperature (as $T^{-alpha}$) as was previously shown for underdoped $YBa_2Cu_3O_{7-delta}$ and $Bi_2Sr_2CaCu_2O_{8+delta}$ samples. Our observations are not consistent with the existence of Kosterlitz-Thouless fluctuations. This tends to indicate that the superconducting pair amplitude is not already defined above $T_C$ in the pseudogap state.
The magnetic field driven superconductor/insulator transition is studied in a large variety of $La_{2-x}Sr_xCuO_4$ thin films of various Sr dopings. Temperature dependence of the resistivity down to 4.2 or 1.5 K under high pulsed magnetic field (up to 57 T) is analyzed. In particular, the existence of plateaus in the resistance versus temperature curves, in a limited range of temperature, for given values of the magnetic field is carefully investigated. It is shown to be associated to scaling behaviour of the resistance versus magnetic field curves, evocative of the presence of a quantum critical point. A three-dimensional (H,x,T) phase diagram is proposed, taking into account the intrinsic lamellar nature of the materials by the existence of a temperature crossover from quantum-two-dimensional to three-dimensional behavior.
Magnetotransport measurements on the overdoped cuprate La_{1.7}Sr_{0.3}CuO_4 are fitted using the Ong construction and band parameters inferred from angle-resolved photoemission. Within a band picture, the low temperature Hall data can only be fitted satisfactorily by invoking strong basal-plane anisotropy in the mean-free-path $ell$. This violation of the isotropic-$ell$ approximation supports a picture of dominant small-angle elastic scattering in cuprates due to out-of-plane substitutional disorder. We show that both band anisotropy and anisotropy in the elastic scattering channel strongly renormalize the Hall coefficient in overdoped La_{2-x}Sr_xCuO_4 over a wide doping and temperature range.
78 - T. Machi , I. Kato , R. Hareyama 2003
The effects of nonmagnetic Zn and magnetic Ni substitution for Cu site on magnetism are studied by measurements of uniform magnetic susceptibility for lightly doped La_{2-x}Sr_xCu_{1-z}M_zO_4 (M=Zn or Ni) polycrystalline samples. For the parent x=0, Zn doping suppresses the N{e}el temperature T_N whereas Ni doping hardly changes T_N up to z=0.3. For the lightly doped samples with T_N~0, the Ni doping recovers T_N. For the superconducting samples, the Ni doping induces the superconductivity-to-antiferromagnetic transition (or crossover). All the heavily Ni doped samples indicate a spin glass behavior at ~15 K.
We present a study of the magnetic susceptibility in carefully detwinned La_{2-x}Sr_{x}CuO_4 single crystals in the lightly-doped region (x=0-0.03), which demonstrates a remarkable in-plane anisotropy of the spin system. This anisotropy is found to persist after the long-range antiferromagnetic (AF) order is destroyed by hole doping, suggesting that doped holes break the AF order into domains in which the spin alignment is kept essentially intact. It turns out that the freezing of the spins taking place at low temperatures is also notably anisotropic, implying that the spin-glass feature is governed by the domain structure as well.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا