H2 in the interstitial channels of nanotube bundles


Abstract in English

The equation of state of H2 adsorbed in the interstitial channels of a carbon nanotube bundle has been calculated using the diffusion Monte Carlo method. The possibility of a lattice dilation, induced by H2 adsorption, has been analyzed by modeling the cohesion energy of the bundle. The influence of factors like the interatomic potentials, the nanotube radius and the geometry of the channel on the bundle swelling is systematically analyzed. The most critical input is proved to be the C-H2 potential. Using the same model than in planar graphite, which is expected to be also accurate in nanotubes, the dilation is observed to be smaller than in previous estimations or even inexistent. H2 is highly unidimensional near the equilibrium density, the radial degree of freedom appearing progressively at higher densities.

Download