No Arabic abstract
We study pumping of charge in a 2DEG in the quantum Hall regime at filling factor $ u = 2$ (2 spin-split levels of the lowest Landau level). For pumping frequencies that match the Zeeman energy splitting, quantum pumping together with hyperfine interaction between electrons and nuclei induces transitions between the spin-split levels. These lead to a step-like change in the pumped current and to polarization of the nuclei. We present quantitative predictions for both. Our model provides the first quantitative tool to both control and measure the amount of local nuclear polarization in a 2DEG.
We present an experiment where the quantum coherence in the edge states of the integer quantum Hall regime is tuned with a decoupling gate. The coherence length is determined by measuring the visibility of quantum interferences in a Mach-Zehnder interferometer as a function of temperature, in the quantum Hall regime at filling factor two. The temperature dependence of the coherence length can be varied by a factor of two. The strengthening of the phase coherence at finite temperature is shown to arise from a reduction of the coupling between co-propagating edge states. This opens the way for a strong improvement of the phase coherence of Quantum Hall systems. The decoupling gate also allows us to investigate how inter-edge state coupling influence the quantum interferences dependence on the injection bias. We find that the finite bias visibility can be decomposed into two contributions: a Gaussian envelop which is surprisingly insensitive to the coupling, and a beating component which, on the contrary, is strongly affected by the coupling.
Electron pairing is a rare phenomenon appearing only in a few unique physical systems; e.g., superconductors and Kondo-correlated quantum dots. Here, we report on an unexpected, but robust, electron pairing in the integer quantum Hall effect (IQHE) regime. The pairing takes place within an interfering edge channel circulating in an electronic Fabry-Perot interferometer at a wide range of bulk filling factors, $2<{ u} _B<5$. The main observations are: (a) High visibility Aharonov-Bohm conductance oscillations with magnetic flux periodicity ${Delta}{phi}={varphi}_0/2=h/2e$ (instead of the ubiquitous $h/e$), with $e$ the electron charge and $h$ the Planck constant; (b) An interfering quasiparticle charge $e ^* {sim} 2e$ - revealed by quantum shot noise measurements; and (c) Full dephasing of the $h/2e$ periodicity by induced dephasing of the adjacent edge channel (while keeping the interfering edge channel intact) : a clear realization of inter-channel entanglement. While this pairing phenomenon clearly results from inter-channel interaction, the exact mechanism that leads to e-e attraction within a single edge channel is not clear.
Observation of interference in the quantum Hall regime may be hampered by a small edge state velocity due to finite phase coherence time. Therefore designing two quantum point contact (QPCs) interferometers having a high edge state velocity is desirable. Here, we present a new simulation method for realistically modeling edge states near QPCs in the integer quantum Hall effect (IQHE) regime. We calculate the filling fraction in the center of the QPC and the velocity of the edge states, and predict structures with high edge state velocity. The 3D Schrodinger equation is split into 1D and 2D parts. Quasi-1D Schrodinger and Poisson equations are solved self-consistently in the IQHE regime to obtain the potential profile near the edges, and quantum transport is used to solve for the edge state wavefunctions. The velocity of edge states is found to be $left< E right> / B$, where $left< E right>$ is the expectation value of the electric field for the edge state. Anisotropically etched trench gated heterostructures with double sided delta doping have the highest edge state velocity among the structures considered.
An electronic Mach Zehnder interferometer is used in the integer quantum hall regime at filling factor 2, to study the dephasing of the interferences. This is found to be induced by the electrical noise existing in the edge states capacitively coupled to each others. Electrical shot noise created in one channel leads to phase randomization in the other, which destroys the interference pattern. These findings are extended to the dephasing induced by thermal noise instead of shot noise: it explains the underlying mechanism responsible for the finite temperature coherence time $tau_phi(T)$ of the edge states at filling factor 2, measured in a recent experiment. Finally, we present here a theory of the dephasing based on Gaussian noise, which is found in excellent agreement with our experimental results.
We study the spectral properties of infinite rectangular quantum graphs in the presence of a magnetic field. We study how these properties are affected when three-dimensionality is considered, in particular, the chaological properties. We then establish the quantization of the Hall transverse conductivity for these systems. This quantization is obtained by relating the transverse conductivity to topological invariants. The different integer values of the Hall conductivity are explicitly computed for an anisotropic diffusion system which leads to fractal phase diagrams.