Do you want to publish a course? Click here

Phase diagram of heavy fermion systems

60   0   0.0 ( 0 )
 Added by Georg Knebel
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Meccano of heavy fermion systems is shown on different cases going from anomalous monochalcogenides to cerium intermetallic compounds with special focus on the ideal case of the CeRu2Si2 series. Discussion is made in the frame of the interplay between valence, electronic structure (Fermi surface), and magnetism. The nice tools given by the temperature, the pressure, and the magnetic field allow to explore different ground states as well as the slow downhill race before reaching a Fermi liquid finish line at very low temperature. Experimentally, the Gruneisen parameter i.e. the ratio of the thermal expansion by the specific heat is a coloured magic number; its temperature, pressure, and magnetic field dependence is a deep disclosure of competing hierarchies and the conversion of this adaptive matter to external responses.



rate research

Read More

Pressure is the cleanest way to tune heavy fermion systems to a quantum phase transition in order to study the rich physics and competing phases, and the comparison between ytterbium and cerium systems is particularly fruitful. We briefly review the mechanisms in play and show some examples of expected and unexpected behaviour. We emphasize the importance of the valence changes under pressure and show how modern synchrotron techniques can accurately determine this, including at low temperature.
We investigated the magnetic phase diagram of the first Pr-based heavy fermion superconductor PrOs4Sb12 by means of high-resolution dc magnetization measurements in low temperatures down to 0.06K. The temperature dependence of the magnetization M(T) at 0.1kOe exhibits two distinct anomalies at Tc1=1.83K and Tc2=1.65K, in agreement with the specific heat measurements at zero field. Increasing magnetic field H, both Tc1(H) and Tc2(H) move toward lower temperatures without showing a tendency of intersecting to each other. Above 10kOe, the transition at Tc2(H) appears to merge into a line of the peak effect which is observed near the upper critical field Hc2 in the isothermal M(H) curves, suggesting a common origin for these two phenomena. The presence of the field-induced ordered phase (called phase A here) is confirmed for three principal directions above 40kOe, with the anisotropic A-phase transition temperature TA: TA[100] > TA[111] >TA[110]. The present results are discussed on the basis of crystalline-electrical-field level schemes with a non-magnetic ground state, with emphasis on a Gamma1 singlet as the possible ground state of Pr3+ in PrOs4Sb12.
Insulating states can be topologically nontrivial, a well-established notion that is exemplified by the quantum Hall effect and topological insulators. By contrast, topological metals have not been experimentally evidenced until recently. In systems with strong correlations, they have yet to be identified. Heavy fermion semimetals are a prototype of strongly correlated systems and, given their strong spin-orbit coupling, present a natural setting to make progress. Here we advance a Weyl-Kondo semimetal phase in a periodic Anderson model on a noncentrosymmetric lattice. The quasiparticles near the Weyl nodes develop out of the Kondo effect, as do the surface states that feature Fermi arcs. We determine the key signatures of this phase, which are realized in the heavy fermion semimetal Ce$_3$Bi$_4$Pd$_3$. Our findings provide the much-needed theoretical foundation for the experimental search of topological metals with strong correlations, and open up a new avenue for systematic studies of such quantum phases that naturally entangle multiple degrees of freedom.
The pressure-temperature phase diagram of the heavy-electron superconductor URu2Si2 has been reinvestigated by ac-susceptibility and elastic neutron-scattering (NS) measurements performed on a small single-crystalline rod (2 mm in diameter, 6 mm in length) in a Cu-Be clamp-type high-pressure cell (P < 1.1 GPa). At ambient pressure, this sample shows the weakest antiferromagnetic (AF) Bragg reflections reported so far, corresponding to the volume-averaged staggered moment of mord ~ 0.011 mB/U. Under applied pressure, the AF scattering intensity exhibits a sharp increase at P ~ 0.7 GPa at low temperatures. The saturation value of the AF scattering intensity above 0.7 GPa corresponds to mord ~ 0.41 mB/U, which is in good agreement with that (~ 0.39 mB/U) observed above 1.5 GPa in our previous NS measurements. The superconductivity is dramatically suppressed by the evolution of AF phase, indicating that the superconducting state coexists only with the hidden order phase. The presence of parasitic ferro- and/or antiferromagnetic phases with transition temperatures T1star =120(5) K, T2star = 36(3) K and T3star = 16.5(5) K and their relationship to the low-T ordered phases are also discussed.
89 - Jan M. Tomczak 2019
The study of (quantum) phase transitions in heavy-fermion compounds relies on a detailed understanding of the microscopic control parameters that induce them. While the influence of external pressure is rather straight forward, atomic substitutions are more involved. Nonetheless, replacing an elemental constituent of a compound with an isovalent atom is---effects of disorder aside---often viewed as merely affecting the lattice constant. Based on this picture of chemical pressure, the unit-cell volume is identified as an empirical proxy for the Kondo coupling. Here instead, we propose an orbital scenario in which the coupling in complex systems can be tuned by isoelectronic substitutions with little or no effect onto cohesive properties. Starting with the Kondo insulator Ce$_3$Bi$_4$Pt$_3$, we consider---within band-theory---isoelectronic substitutions of the pnictogen (Bi$rightarrow$Sb) and/or the precious metal (Pt$rightarrow$Pd). We show for the isovolume series Ce$_3$Bi$_4$(Pt$_{1-x}$Pd$_x$)$_3$ that the Kondo coupling is in fact substantially modified by the different radial extent of the $5d$ (Pt) and $4d$ (Pd) orbitals, while spin-orbit coupling mediated changes are minute. Combining experimental Kondo temperatures with simulated hybridization functions, we also predict effective masses $m^*$, finding excellent agreement with many-body results for Ce$_3$Bi$_4$Pt$_3$. Our analysis motivates studying the so-far unknown Kondo insulator Ce$_3$Sb$_4$Pd$_3$, for which we predict $m^*/m_{band}=mathcal{O}(10)$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا