Do you want to publish a course? Click here

High temperature gate control of quantum well spin memory

45   0   0.0 ( 0 )
 Added by Oleg Z. Karimov
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

Time-resolved optical measurements in (110)-oriented GaAs/AlGaAs quantum wells show a ten-fold increase of the spin-relaxation rate as a function of applied electric field from 20 to 80 kV cm-1 at 170 K and indicate a similar variation at 300 K, in agreement with calculations based on the Rashba effect. Spin relaxation is almost field-independent below 20 kV cm-1 reflecting quantum well interface asymmetry. The results indicate the achievability of voltage-gateable spin-memory time longer than 3 ns simultaneously with high electron mobility.



rate research

Read More

331 - S. Anghel , F. Passmann , A.Singh 2017
Electron spin transport and dynamics are investigated in a single, high-mobility, modulation-doped, GaAs quantum well using ultrafast two-color Kerr-rotation micro-spectroscopy, supported by qualitative kinetic theory simulations of spin diffusion and transport. Evolution of the spins is governed by the Dresselhaus bulk and Rashba structural inversion asymmetries, which manifest as an effective magnetic field that can be extracted directly from the experimental coherent spin precession. A spin precession length L-SOI is defined as one complete precession in the effective magnetic field. It is observed that application of (a) an out-of-plane electric field changes the spin decay time and L-SOI through the Rashba component of the spin-orbit coupling, (b) an in-plane magnetic field allows for extraction of the Dresselhaus and Rashba parameters, and (c) an in-plane electric field markedly modifies both the L-SOI and diffusion coefficient. While simulations reproduce the main features of the experiments, the latter results exceed the corresponding simulations and extend previous studies of drift-current-dependent spin-orbit interactions.
Quantum memories provide intermediate storage of quantum information until it is needed for the next step of a quantum algorithm or a quantum communication process. Relevant figures of merit are therefore the fidelity with which the information can be written and retrieved, the storage time, and also the speed of the read-write process. Here, we present experimental data on a quantum memory consisting of a single $^{13}$C nuclear spin that is strongly coupled to the electron spin of a nitrogen-vacancy (NV) center in diamond. The strong hyperfine interaction of the nearest-neighbor carbon results in transfer times of 300 ns between the register qubit and the memory qubit, with an overall fidelity of 88 % for the write - storage - read cycle. The observed storage times of 3.3 ms appear to be limited by the T$_1$ relaxation of the electron spin. We discuss a possible scheme that may extend the storage time beyond this limit.
154 - M. Kugler , T. Andlauer , T. Korn 2009
We have investigated spin and carrier dynamics of resident holes in high-mobility two-dimensional hole systems in GaAs/Al$_{0.3}$Ga$_{0.7}$As single quantum wells at temperatures down to 400 mK. Time-resolved Faraday and Kerr rotation, as well as time-resolved photoluminescence spectroscopy are utilized in our study. We observe long-lived hole spin dynamics that are strongly temperature dependent, indicating that in-plane localization is crucial for hole spin coherence. By applying a gate voltage, we are able to tune the observed hole g factor by more than 50 percent. Calculations of the hole g tensor as a function of the applied bias show excellent agreement with our experimental findings.
Quantum memories with high efficiency and fidelity are essential for long-distance quantum communication and information processing. Techniques have been developed for quantum memories based on atomic ensembles. The atomic memories relying on the atom-light resonant interaction usually suffer from the limitations of narrow bandwidth. The far-off-resonant Raman process has been considered a potential candidate for use in atomic memories with large bandwidths and high speeds. However, to date, the low memory efficiency remains an unsolved bottleneck. Here, we demonstrate a high-performance atomic Raman memory in Rb87 vapour with the development of an optimal control technique. A memory efficiency of 82.6% for 10-ns optical pulses is achieved and is the highest realized to date in atomic Raman memories. In particular, an unconditional fidelity of up to 98.0%, significantly exceeding the no-cloning limit, is obtained with the tomography reconstruction for a single-photon level coherent input. Our work marks an important advance of atomic Raman memory towards practical applications in quantum information processing.
233 - M. Studer , G. Salis , K. Ensslin 2009
We study the tunability of the spin-orbit interaction in a two-dimensional electron gas with a front and a back gate electrode by monitoring the spin precession frequency of drifting electrons using time-resolved Kerr rotation. The Rashba spin splitting can be tuned by the gate biases, while we find a small Dresselhaus splitting that depends only weakly on the gating. We determine the absolute values and signs of the two components and show that for zero Rashba spin splitting the anisotropy of the spin-dephasing rate vanishes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا