Do you want to publish a course? Click here

Scale free networks from a Hamiltonian dynamics

82   0   0.0 ( 0 )
 Added by Marco Baiesi
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

Contrary to many recent models of growing networks, we present a model with fixed number of nodes and links, where it is introduced a dynamics favoring the formation of links between nodes with degree of connectivity as different as possible. By applying a local rewiring move, the network reaches equilibrium states assuming broad degree distributions, which have a power law form in an intermediate range of the parameters used. Interestingly, in the same range we find non-trivial hierarchical clustering.



rate research

Read More

The consensus model of Deffuant et al is simplified by allowing for many discrete instead of infinitely many continuous opinions, on a directed Barabasi-Albert network. A simple scaling law is observed. We then introduce noise and also use a more realistic network and compare the results. Finally, we look at a multi-layer model representing various age levels, and we include advertising effects.
Methods connecting dynamical systems and graph theory have attracted increasing interest in the past few years, with applications ranging from a detailed comparison of different kinds of dynamics to the characterisation of empirical data. Here we investigate the effects of the (multi)fractal properties of a time signal, common in sequences arising from chaotic or strange attractors, on the topology of a suitably projected network. Relying on the box counting formalism, we map boxes into the nodes of a network and establish analytic expressions connecting the natural measure of a box with its degree in the graph representation. We single out the conditions yielding to the emergence of a scale-free topology, and validate our findings with extensive numerical simulations.
398 - Yan-Bo Xie , Tao Zhou , 2005
In this letter, we proposed an ungrowing scale-free network model, wherein the total number of nodes is fixed and the evolution of network structure is driven by a rewiring process only. In spite of the idiographic form of $G$, by using a two-order master equation, we obtain the analytic solution of degree distribution in stable state of the network evolution under the condition that the selection probability $G$ in rewiring process only depends on nodes degrees. A particular kind of the present networks with $G$ linearly correlated with degree is studied in detail. The analysis and simulations show that the degree distributions of these networks can varying from the Possion form to the power-law form with the decrease of a free parameter $alpha$, indicating the growth may not be a necessary condition of the self-organizaton of a network in a scale-free structure.
Recent studies introduced biased (degree-dependent) edge percolation as a model for failures in real-life systems. In this work, such process is applied to networks consisting of two types of nodes with edges running only between nodes of unlike type. Such bipartite graphs appear in many social networks, for instance in affiliation networks and in sexual contact networks in which both types of nodes show the scale-free characteristic for the degree distribution. During the depreciation process, an edge between nodes with degrees k and q is retained with probability proportional to (kq)^(-alpha), where alpha is positive so that links between hubs are more prone to failure. The removal process is studied analytically by introducing a generating functions theory. We deduce exact self-consistent equations describing the system at a macroscopic level and discuss the percolation transition. Critical exponents are obtained by exploiting the Fortuin-Kasteleyn construction which provides a link between our model and a limit of the Potts model.
Biased (degree-dependent) percolation was recently shown to provide new strategies for turning robust networks fragile and vice versa. Here we present more detailed results for biased edge percolation on scale-free networks. We assume a network in which the probability for an edge between nodes $i$ and $j$ to be retained is proportional to $(k_ik_j)^{-alpha}$ with $k_i$ and $k_j$ the degrees of the nodes. We discuss two methods of network reconstruction, sequential and simultaneous, and investigate their properties by analytical and numerical means. The system is examined away from the percolation transition, where the size of the giant cluster is obtained, and close to the transition, where nonuniversal critical exponents are extracted using the generating functions method. The theory is found to agree quite well with simulations. By introducing an extension of the Fortuin-Kasteleyn construction, we find that biased percolation is well described by the $qto 1$ limit of the $q$-state Potts model with inhomogeneous couplings.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا