We develop a phenomenological description of the nu=5/2 quantum Hall state in which the Halperin-Lee-Read theory of the half-filled Landau level is combined with a p-wave pairing interaction between composite fermions (CFs). The electromagnetic response functions for the resulting mean-field superconducting state of the CFs are calculated and used in an RPA calculation of the q and omega dependent longitudinal conductivity of the physical electrons, a quantity which can be measured experimentally.
The relation between the conductivity tensors of Composite Fermions and electrons is extended to second generation Composite Fermions. It is shown that it crucially depends on the coupling matrix for the Chern-Simons gauge field. The results are applied to a model of interacting Composite Fermions that can explain both the anomalous plateaus in spin polarization and the corresponding maxima in the resistivity observed in recent transport experiments.
When interacting two-dimensional electrons are placed in a large perpendicular magnetic field, to minimize their energy, they capture an even number of flux quanta and create new particles called composite fermions (CFs). These complex electron-flux-bound states offer an elegant explanation for the fractional quantum Hall effect. Furthermore, thanks to the flux attachment, the effective field vanishes at a half-filled Landau level and CFs exhibit Fermi-liquid-like properties, similar to their zero-field electron counterparts. However, being solely influenced by interactions, CFs should possess no memory whatever of the electron parameters. Here we address a fundamental question: Does an anisotropy of the electron effective mass and Fermi surface (FS) survive composite fermionization? We measure the resistance of CFs in AlAs quantum wells where electrons occupy an elliptical FS with large eccentricity and anisotropic effective mass. Similar to their electron counterparts, CFs also exhibit anisotropic transport, suggesting an anisotropy of CF effective mass and FS.
We propose a new method for detecting paired states in either bosonic or fermionic systems using interference experiments with independent or weakly coupled low dimensional systems. We demonstrate that our method can be used to detect both the FFLO and the d-wave paired states of fermions, as well as quasicondensates of singlet pairs for polar F=1 atoms in two dimensional systems. We discuss how this method can be used to perform phase-sensitive determination of the symmetry of the pairing amplitude.
Each end of a Kitaev chain in topological phase hosts a Majorana fermion. Zero bias conductance peak is an evidence of Majorana fermion when the two Majorana fermions are decoupled. These two Majorana fermions are separated in space and this nonlocal aspect can be probed when the two are coupled. Crossed Andreev reflection is the evidence of the nonlocality of Majorana fermions. Nonlocality of Majorana fermions has been proposed to be probed by noise measurements since simple conductance measurements cannot probe it due to the almost cancellation of currents from electron tunneling and crossed Andreev reflection. Kitaev ladders on the other hand host subgap Andreev states which can be used to control the relative currents due to crossed Andreev reflection and electron tunneling. We propose to employ Kitaev ladder in series with Kitaev chain and show that the transconductance in this setup can be used as a probe of nonlocality of Majorana fermions by enhancing crossed Andreev reflection over electron tunneling.
Composite fermions in fractional quantum Hall (FQH) systems are believed to form a Fermi sea of weakly interacting particles at half filling $ u=1/2$. Recently, it was proposed (D. T. Son, Phys. Rev. X 5, 031027 (2015)) that these composite fermions are Dirac particles. In our work, we demonstrate experimentally that composite fermions found in monolayer graphene are Dirac particles at half filling. Our experiments have addressed FQH states in high-mobility, suspended graphene Corbino disks in the vicinity of $ u=1/2$. We find strong temperature dependence of conductivity $sigma$ away from half filling, which is consistent with the expected electron-electron interaction induced gaps in the FQH state. At half filling, however, the temperature dependence of conductivity $sigma(T)$ becomes quite weak as expected for a Fermi sea of composite fermions and we find only logarithmic dependence of $sigma$ on $T$. The sign of this quantum correction coincides with weak antilocalization of composite fermions, which reveals the relativistic Dirac nature of composite fermions in graphene.