Do you want to publish a course? Click here

From multiplicative noise to directed percolation in wetting transitions

83   0   0.0 ( 0 )
 Added by Francesco Ginelli
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

A simple one-dimensional microscopic model of the depinning transition of an interface from an attractive hard wall is introduced and investigated. Upon varying a control parameter, the critical behaviour observed along the transition line changes from a directed-percolation to a multiplicative-noise type. Numerical simulations allow for a quantitative study of the multicritical point separating the two regions, Mean-field arguments and the mapping on a yet simpler model provide some further insight on the overall scenario.



rate research

Read More

174 - Deepak Dhar 2017
These lectures provide an introduction to the directed percolation and directed animals problems, from a physicists point of view. The probabilistic cellular automaton formulation of directed percolation is introduced. The planar duality of the diode-resistor-insulator percolation problem in two dimensions, and relation of the directed percolation to undirected first passage percolation problem are described. Equivalence of the $d$-dimensional directed animals problem to $(d-1)$-dimensional Yang-Lee edge-singularity problem is established. Self-organized critical formulation of the percolation problem, which does not involve any fine-tuning of coupling constants to get critical behavior is briefly discussed.
For a general class of diffusion processes with multiplicative noise, describing a variety of physical as well as financial phenomena, mostly typical of complex systems, we obtain the analytical solution for the moments at all times. We allow for a non trivial time dependence of the microscopic dynamics and we analytically characterize the process evolution, possibly towards a stationary state, and the direct relationship existing between the drift and diffusion coefficients and the time scaling of the moments.
We study critical spreading in a surface-modified directed percolation model in which the left- and right-most sites have different occupation probabilities than in the bulk. As we vary the probability for growth at an edge, the critical exponents switch from the compact directed percolation class to ordinary directed percolation. We conclude that the nonuniversality observed in models with multiple absorbing configurations cannot be explained as a simple surface effect.
247 - U. Basu , P. K. Mohanty 2014
We introduce a stochastic sandpile model where finite drive and dissipation are coupled to the activity field. The absorbing phase transition here, as expected, belongs to the directed percolation (DP) universality class. We focus on the small drive and dissipation limit, i.e. the so-called self-organised critical (SOC) regime and show that the system exhibits a crossover from ordinary DP scaling to a dissipation-controlled scaling which is independent of the underlying dynamics or spatial dimension. The new scaling regime continues all the way to the zero bulk drive limit suggesting that the corresponding SOC behaviour is only DP, modified by the dissipation-controlled scaling. We demonstrate this for the continuous and discrete Manna model driven by noise and bulk dissipation.
113 - Uwe C. Tauber 1997
We study a hierarchy of directed percolation (DP) processes for particle species A, B, ..., unidirectionally coupled via the reactions A -> B, ... When the DP critical points at all levels coincide, multicritical behavior emerges, with density exponents beta^{(k)} which are markedly reduced at each hierarchy level k >= 2. We compute the fluctuation corrections to beta^{(2)} to O(epsilon = 4-d) using field-theoretic renormalization group techniques. Monte Carlo simulations are employed to determine the new exponents in dimensions d <= 3.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا