No Arabic abstract
Within a rigid-band correlated electron model for oligomers of poly-(paraphenylene) (PPP) and poly-(paraphenylenevinylene) (PPV), we show that there exist two fundamentally different classes of two-photon A$_g$ states in these systems to which photoinduced absorption (PA) can occur. At relatively lower energies there occur A$_g$ states which are superpositions of one electron - one hole (1e--1h) and two electron -- two hole (2e--2h) excitations, that are both comprised of the highest delocalized valence band and the lowest delocalized conduction band states only. The dominant PA is to one specific member of this class of states (the mA$_g$). In addition to the above class of A$_g$ states, PA can also occur to a higher energy kA$_g$ state whose 2e--2h component is {em different} and has significant contributions from excitations involving both delocalized and localized bands. Our calculated scaled energies of the mA$_g$ and the kA$_g$ agree reasonably well to the experimentally observed low and high energy PAs in PPV. The calculated relative intensities of the two PAs are also in qualitative agreement with experiment. In the case of ladder-type PPP and its oligomers, we predict from our theoretical work a new intense PA at an energy considerably lower than the region where PA have been observed currently. Based on earlier work that showed that efficient charge--carrier generation occurs upon excitation to odd--parity states that involve both delocalized and localized bands, we speculate that it is the characteristic electronic nature of the kA$_g$ that leads to charge generation subsequent to excitation to this state, as found experimentally.
We have measured the ratio, r = $sigma_S/sigma_T$ of the formation cross section, $sigma$ of singlet ($sigma_S$) and triplet ($sigma_T$) excitons from oppositely charged polarons in a large variety of $pi$-conjugated oligomer and polymer films, using the photoinduced absorption and optically detected magnetic resonance spectroscopies. The ratio r is directly related to the singlet exciton yield, which in turn determines the maximum electroluminescence quantum efficiency in organic light emitting diodes (OLED). We discovered that r increases with the conjugation length, CL; in fact a universal dependence exists in which $r^{-1}$ depends linearly on $CL^{-1}$, irrespective of the chain backbone structure. These results indicate that $pi$-conjugated polymers have a clear advantage over small molecules in OLED applications.
The exciton relaxation dynamics of photoexcited electronic states in poly($p$-phenylenevinylene) (PPV) are theoretically investigated within a coarse-grained model, in which both the exciton and nuclear degrees of freedom are treated quantum mechanically. The Frenkel-Holstein Hamiltonian is used to describe the strong exciton-phonon coupling present in the system, while external damping of the internal nuclear degrees of freedom are accounted for by a Lindblad master equation. Numerically, the dynamics are computed using the time evolving block decimation (TEBD) and quantum jump trajectory techniques. The values of the model parameters physically relevant to polymer systems naturally lead to a separation of time scales, with the ultra-fast dynamics corresponding to energy transfer from the exciton to the internal phonon modes (i.e., the C-C bond oscillations), while the longer time dynamics correspond to damping of these phonon modes by the external dissipation. Associated with these time scales, we investigate the following processes that are indicative of the system relaxing onto the emissive chromophores of the polymer: 1) Exciton-polaron formation occurs on an ultra-fast time scale, with the associated exciton-phonon correlations present within half a vibrational time period of the C-C bond oscillations. 2) Exciton decoherence is driven by the decay in the vibrational overlaps associated with exciton-polaron formation, occurring on the same time scale. 3) Exciton density localization is driven by the external dissipation, arising from `wavefunction collapse occurring as a result of the system-environment interactions. Finally, we show how fluorescence anisotropy measurements can be used to investigate the exciton decoherence process during the relaxation dynamics.
Optical absorption spectra of poly(thiophene vinylene) (PTV) conjugated polymers have been studied at room temperature in the spectral range of 450 to 800 nm. A dominant peak located at 577 nm and a prominent shoulder at 619 nm are observed. Another shoulder located at 685 nm is observed at high concentration and after additional treatment (heat, sonification) only. Equilibrium atomic geometries and optical absorption of PTV conjugated polymers have also been studied by first principles density functional theory (DFT). For PTV in solvent, the theoretical calculations predict two equilibrium geometries with different interchain distances. By comparative analysis of the experimental and theoretical data, it is demonstrated that the new measured long-wavelength optical absorption shoulder is consistent with new optical absorption peak predicted for most energetically favorable PTV phase in the solvent. This shoulder is interpreted as a direct indication of increased interchain interaction in the solvent which has caused additional electronic energy structure transformations.
The nature of the primary photoexcitations in semiconducting single-walled carbon nanotubes (S-SWCNTs) is of strong current interest. We have studied the emission spectra of S-SWCNTs and two different $pi$-conjugated polymers in solutions and films, and have also performed ultrafast pump-probe spectroscopy on these systems. The emission spectra relative to the absorption bands are very similar in S-SWCNTs and polymers, with redshifted photoluminescence in films showing exciton migration. The transient photoinduced absorptions (PAs) in SWCNTs and $pi$-conjugated polymers are also remarkably similar, with a low energy PA$_1$ and a higher energy PA$_2$ in all cases. Theoretical calculations of excited state absorptions within a correlated $pi$-electron Hamiltonian find the same excitonic energy spectrum for S-SWCNTs and $pi$-conjugated polymers, illustrating the universal features of quasi-one-dimensional excitons in carbon-based $pi$-conjugated systems. In both cases PA$_1$ is an excited state absorption from the optically allowed exciton to a two-photon exciton that occurs below the continuum band threshold. PA$_1$ therefore gives the lower limit of the binding energy of the lowest optical exciton. The binding energy of lowest exciton belonging to the widest S-SWCNTs with diameters $geq$ 1 nm in films is 0.3--0.4 eV, as determined by both experimental and theoretical methods.
A density matrix renormalisation group scheme is developed, allowing for the first time essentially exact numerical solutions for the important excited states of a realistic semi-empirical model for oligo-phenylenes. By monitoring the evolution of the energies with chain length and comparing them to the experimental absorption peaks of oligomers and thin films, we assign the four characteristic absorption peaks of phenyl-based polymers. We also determine the position and nature of the nonlinear optical states in this model.