Do you want to publish a course? Click here

High Temperature Ferromagnetism with Giant Magnetic Moment in Transparent Co-doped SnO2-d

80   0   0.0 ( 0 )
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

Occurrence of room temperature ferromagnetism is demonstrated in pulsed laser deposited thin films of Sn1-xCoxO2-d (x<0.3). Interestingly, films of Sn0.95Co0.05O2-d grown on R-plane sapphire not only exhibit ferromagnetism with a Curie temperature close to 650 K, but also a giant magnetic moment of about 7 Bohr-Magneton/Co, not yet reported in any diluted magnetic semiconductor system. The films are semiconducting and optically highly transparent.



rate research

Read More

Ab initio studies have theoretically predicted room temperature ferromagnetism in crystalline SnO2, ZrO2 and TiO2 doped with non magnetic element from the 1A column as K and Na. Our purpose is to address experimentally the possibility of magnetism in both Sn1-xKxO2 and Sn1-xCaxO2 compounds. The samples have been prepared using equilibrium methods of standard solid state route. Our study has shown that both Sn1-xCaxO2 and Sn1-xKxO2 structure is thermodynamically unstable and leads to a phase separation, as shown by X-ray diffraction and detailed micro-structural analyses with high resolution transmission electron microscopy (TEM). In particular, the crystalline SnO2 grains are surrounded by K-based amorphous phase. In contrast to Ca: SnO2 samples we have obtained a magnetic phase in K: SnO2 ones, but no long range ferromagnetic order. The K: SnO2 samples exhibit a moments of the order of 0.2 {mu}B/K /ion, in contrast to ab-initio calculations which predict 3{mu}B, where K atoms are on the Sn crystallographic site. The apparent contradictions between our experiments and first principle studies are discussed.
Magnetic 3d-ions doped into wide-gap oxides show signatures of room temperature ferromagnetism, although their concentration is two orders of magnitude smaller than that in conventional magnets. The prototype of these exceptional materials is Co-doped ZnO, for which an explanation of the room temperature ferromagnetism is still elusive. Here we demonstrate that magnetism originates from Co2+ oxygen-vacancy pairs with a partially filled level close to the ZnO conduction band minimum. The magnetic interaction between these pairs is sufficiently long-ranged to cause percolation at moderate concentrations. However, magnetically correlated clusters large enough to show hysteresis at room temperature already form below the percolation threshold and explain the current experimental findings. Our work demonstrates that the magnetism in ZnO:Co is entirely governed by intrinsic defects and a phase diagram is presented. This suggests a recipe for tailoring the magnetic properties of spintronics materials by controlling their intrinsic defects.
Ferromagnetism is observed at and above room temperature in pulsed laser deposited epitaxial films of Co-doped Ti-based oxide perovskite (La1-xSrxTiO3-d). The system has the characteristics of an intrinsic diluted magnetic semiconductor (metal) at low concentrations (<~ 2 %), but develops inhomogeneity at higher cobalt concentrations. The films range from being opaque metallic to transparent semiconducting depending on the oxygen pressure during growth and are yet ferromagnetic.
The nature of the often reported room temperature ferromagnetism in transition metal doped oxides is still a matter of huge debate. Herein we report on room temperature ferromagnetism in high quality Co-doped ZnO (Zn1-xCoxO) bulk samples synthesized via standard solid-state reaction route. Reference paramagnetic Co-doped ZnO samples with low level of structural defects are subjected to heat treatments in a reductive atmosphere in order to introduce defects in the samples in a controlled way. A detailed structural analysis is carried out in order to characterize the induced defects and their concentration. The magnetometry revealed the coexistence of a paramagnetic and a ferromagnetic phase at room temperature in straight correlation with the structural properties. The saturation magnetization is found to increase with the intensification of the heat treatment, and, therefore, with the increase of the density of induced defects. The magnetic behavior is fully explained in terms of the bound magnetic polaron model. Based on the experimental findings, supported by theoretical calculations, we attribute the origin of the observed defect-induced-ferromagnetism to the ferromagnetic coupling between the Co ions mediated by magnetic polarons due to zinc interstitial defects.
152 - G. Herranz , R. Ranchal , M. Bibes 2005
We report on tunneling magnetoresistance (TMR) experiments that demonstrate the existence of a significant spin polarization in Co-doped (La,Sr)TiO3-d (Co-LSTO), a ferromagnetic diluted magnetic oxide system (DMOS) with high Curie temperature. These TMR experiments have been performed on magnetic tunnel junctions associating Co-LSTO and Co electrodes. Extensive structural analysis of Co-LSTO combining high-resolution transmission electron microscopy and Auger electron spectroscopy excluded the presence of Co clusters in the Co-LSTO layer and thus, the measured ferromagnetism and high spin polarization are intrinsic properties of this DMOS. Our results argue for the DMOS approach with complex oxide materials in spintronics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا