Spectroscopy of Dark Soliton States in Bose-Einstein Condensates


Abstract in English

Experimental and numerical studies of the velocity field of dark solitons in Bose-Einstein condensates are presented. The formation process after phase imprinting as well as the propagation of the emerging soliton are investigated using spatially resolved Bragg-spectroscopy of soliton states in Bose-Einstein condensates of Rubidium87. A comparison of experimental data to results from numerical simulations of the Gross-Pitaevskii equation clearly identifies the flux underlying a dark soliton propagating in a Bose-Einstein condensate. The results allow further optimization of the phase imprinting method for creating collective exitations of Bose-Einstein condensates.

Download