The temperature and volume dependences of the thermal conductivity of solid Kr(1-x)Xe(x)solution are analyzed within the model in which heat is transferred by mobile low-frequency phonons; above the phonon mobility edge this is done by localized modes migrating randomly from site to site. The phonon mobility edge (w0)is determined from the condition that the phonon mean -free path restricted by Umklapp processes and point defects scattering cannot be smaller than one-half the phonon wavelength. The Bridgman coefficient is the weighted - mean over these modes whose volume dependences differ widely. It is shown that the amount of heat transferred by the localized modes above 100 K is quite large even in pure Kr and it increases with rising temperature and impurity concentration.
We numerically study the evolution of the vibrational density of states $D(omega)$ of zero-temperature glasses when their kinetic stability is varied over an extremely broad range, ranging from poorly annealed glasses obtained by instantaneous quenches from above the onset temperature, to ultrastable glasses obtained by quenching systems thermalised below the experimental glass temperature. The low-frequency part of the density of states splits between extended and quasi-localized modes. Extended modes exhibit a boson peak crossing over to Debye behaviour ($D(omega) sim omega^2$) at low-frequency, with a strong correlation between the two regimes. Quasi-localized modes instead obey $D(omega) sim omega^4$, irrespective of the glass stability. However, the prefactor of this quartic law becomes smaller in more stable glasses, and the corresponding modes become more localized and sparser. Our work is the first numerical observation of quasi-localized modes in a regime relevant to experiments, and it establishes a direct connection between glass stability and soft vibrational motion in amorphous solids.
Using neutron elastic and inelastic scattering and high-energy x-ray diffraction, we present a comparison of 40% Pb(Mg$_{1/3}$Nb$_{2/3}$)O$_{3}$-60% PbTiO$_{3}$ (PMN-60PT) with pure Pb(Mg$_{1/3}$Nb$_{2/3}$)O$_{3}$ (PMN) and PbTiO$_{3}$ (PT). We measure the structural properties of PMN-60PT to be identical to pure PT, however, the lattice dynamics are exactly that previously found in relaxors PMN and PZN. PMN-60PT displays a well-defined macroscopic structural transition from a cubic to tetragonal unit cell at 550 K. The diffuse scattering is shown to be weak indicating that the structural distortion is long-range in PMN-60PT and short-range polar correlations (polar nanoregions) are not present. Even though polar nanoregions are absent, the soft optic mode is short-lived for wavevectors near the zone-centre. Therefore, PMN-60PT displays the same waterfall effect as prototypical relaxors PMN and PZN. We conclude that it is random fields resulting from the intrinsic chemical disorder which is the reason for the broad transverse optic mode observed in PMN and PMN-60PT near the zone centre and not due to the formation of short-ranged polar correlations. Through our comparison of PMN, PMN-60PT, and pure PT, we interpret the dynamic and static properties of the PMN-xPT system in terms of a random field model in which the cubic anisotropy term dominates with increasing doping of PbTiO$_{3}$.
In this paper we give a brief review of the relation between microscopic dynamical properties and the Fourier law of heat conduction as well as the connection between anomalous conduction and anomalous diffusion. We then discuss the possibility to control the heat flow.
We present the application of a fast quasi-adiabatic continuous method to the measurement of specific heat at 4He temperatures, which can be used for the study of a wide range of materials. The technique can be performed in the same configuration used for the relaxation method, as the typical time constants between calorimetric cell and thermal sink at 4.2 K are chosen to be of the order of tau~30 s. The accuracy in the absolute values have been tested by comparing them to relaxation-method results obtained in the same samples (performed in situ using the same set-up), with a deviation between the absolute values < 3% in the whole temperature range. This new version of the continuous calorimetric method at low temperatures allows us to completely characterize and measure a sample within a few hours with a high density of data points, whereas when employing other methods we typically need a few days. An exhaustive study has been performed for reproducibility to be tested. In the present work, we have applied this method to two different substances: CeSb2, which exhibits three magnetic transitions at 15.5 K, 11.7 K and 9.5 K, and graphite, both highly-oriented pyrolytic graphite (HOPG) and natural crystals. Our results on these graphites are discussed in comparison with previous published data on different kinds of graphite samples.
We study heat conduction in one dimensional (1D) anharmonic lattices analytically and numerically by using an effective phonon theory. It is found that every effective phonon mode oscillates quasi-periodically. By weighting the power spectrum of the total heat flux in the Debye formula, we obtain a unified formalism that can explain anomalous heat conduction in momentum conserved lattices without on-site potential and normal heat conduction in lattices with on-site potential. Our results agree very well with numerical ones for existing models such as the Fermi-Pasta-Ulam model, the Frenkel-Kontorova model and the $phi^4$ model etc.
V.A. Konstantinov
,E.S. Orel
,V.P. Revyakin (B.I. Verkin Institute forn Low Temperature Physics
.
(2003)
.
"Heat transfer by mobile low-frequency phonons and localized modes in cryocrystal solutions"
.
Revyakin
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا