Do you want to publish a course? Click here

Membrane bound protein diffusion viewed by fluorescence recovery after bleaching experiments : models analysis

93   0   0.0 ( 0 )
 Added by Favard Cyril
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

Diffusion processes in biological membranes are of interest to understand the macromolecular organisation and function of several molecules. Fluorescence Recovery After Photobleaching (FRAP) has been widely used as a method to analyse this processes using classical Brownian diffusion model. In the first part of this work, the analytical expression of the fluorescence recovery as a function of time has been established for anomalous diffusion due to long waiting times. Then, experimental fluorescence recoveries recorded in living cells on a membrane-bound protein have been analysed using three different models : normal Brownian diffusion, Brownian diffusion with an immobile fraction and anomalous diffusion due to long waiting times.



rate research

Read More

Many commonly used force fields for protein systems such as AMBER, CHARMM, GROMACS, OPLS, and ECEPP have amino-acid-independent force-field parameters of main-chain torsion-energy terms. Here, we propose a new type of amino-acid-dependent torsion-energy terms in the force fields. As an example, we applied this approach to AMBER ff03 force field and determined new amino-acid-dependent parameters for $psi$ and $psi$ angles for each amino acid by using our optimization method, which is one of the knowledge-based approach. In order to test the validity of the new force-field parameters, we then performed folding simulations of $alpha$-helical and $beta$-hairpin peptides, using the optimized force field. The results showed that the new force-field parameters gave structures more consistent with the experimental implications than the original AMBER ff03 force field.
The hydrophobic effect stabilizes the native structure of proteins by minimizing the unfavourable interactions between hydrophobic residues and water through the formation of a hydrophobic core. Here we include the entropic and enthalpic contributions of the hydrophobic effect explicitly in an implicit solvent model. This allows us to capture two important effects: a length-scale dependence and a temperature dependence for the solvation of a hydrophobic particle. This consistent treatment of the hydrophobic effect explains cold denaturation and heat capacity measurements of solvated proteins.
Single-molecule force spectroscopy has proven to be a powerful tool for studying the kinetic behavior of biomolecules. Through application of an external force, conformational states with small or transient populations can be stabilized, allowing them to be characterized and the statistics of individual trajectories studied to provide insight into biomolecular folding and function. Because the observed quantity (force or extension) is not necessarily an ideal reaction coordinate, individual observations cannot be uniquely associated with kinetically distinct conformations. While maximum-likelihood schemes such as hidden Markov models have solved this problem for other classes of single-molecule experiments by using temporal information to aid in the inference of a sequence of distinct conformational states, these methods do not give a clear picture of how precisely the model parameters are determined by the data due to instrument noise and finite-sample statistics, both significant problems in force spectroscopy. We solve this problem through a Bayesian extension that allows the experimental uncertainties to be directly quantified, and build in detailed balance to further reduce uncertainty through physical constraints. We illustrate the utility of this approach in characterizing the three-state kinetic behavior of an RNA hairpin in a stationary optical trap.
Current all-atom potential based molecular dynamics (MD) allow the identification of a proteins functional motions on a wide-range of time-scales, up to few tens of ns. However, functional large scale motions of proteins may occur on a time-scale currently not accessible by all-atom potential based molecular dynamics. To avoid the massive computational effort required by this approach several simplified schemes have been introduced. One of the most satisfactory is the Gaussian Network approach based on the energy expansion in terms of the deviation of the protein backbone from its native configuration. Here we consider an extension of this model which captures in a more realistic way the distribution of native interactions due to the introduction of effective sidechain centroids. Since their location is entirely determined by the protein backbone, the model is amenable to the same exact and computationally efficient treatment as previous simpler models. The ability of the model to describe the correlated motion of protein residues in thermodynamic equilibrium is established through a series of successful comparisons with an extensive (14 ns) MD simulation based on the AMBER potential of HIV-1 protease in complex with a peptide substrate. Thus, the model presented here emerges as a powerful tool to provide preliminary, fast yet accurate characterizations of proteins near-native motion.
We present a computational study on the folding and aggregation of proteins in aqueous environment, as function of its concentration. We show how the increase of the concentration of individual protein species can induce a partial unfolding of the native conformation without the occurrence of aggregates. A further increment of the protein concentration results in the complete loss of the folded structures and induces the formation of protein aggregates. We discuss the effect of the protein interface on the water fluctuations in the protein hydration shell and their relevance in the protein-protein interaction.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا