Do you want to publish a course? Click here

Resonant X-ray Study on the Bi-Layered Perovskite Mn Oxide LaSr2Mn2O7

122   0   0.0 ( 0 )
 Added by Yusuke Wakabayashi
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

Charge and orbital ordering behaviors in the half doped bi-layered compound LaSr2Mn2O7 have been studied by resonant and non-resonant X-ray scattering. Three different order parameters, which correspond to the A-type antiferromagnetic, a charge and an orbital ordered states, were observed by measuring the magnetostriction and the superlattice peaks characterized by wavevectors (1/2 1/2 0) and (1/4 1/4 0), respectively. The superlattice reflections indicating the charge and orbital ordered states were observed below 210 K. Both the intensities reach a maximum at 160 K on cooling and become very weak below 100 K. The peak width of the charge ordered state agrees with that of the orbital ordered state at all temperatures studied. These results indicate that both the states originate from a single phase and that the charge/orbital ordered islands with definite interfaces disperse in the A-type antiferromagnetic phase. The dimensionality of the charge/orbital ordered phase is discussed using this model.



rate research

Read More

We report a theoretical study on resonant x-ray emission spectra (RXES) in the whole energy region of the Mn $L_{2,3}$ white lines for three prototypical Mn/Ag(001) systems: (i) a Mn impurity in Ag, (ii) an adsorbed Mn monolayer on Ag, and (iii) a thick Mn film. The calculated RXES spectra depend strongly on the excitation energy. At $L_3$ excitation, the spectra of all three systems are dominated by the elastic peak. For excitation energies around $L_2$, and between $L_3$ and $L_2$, however, most of the spectral weight comes from inelastic x-ray scattering. The line shape of these inelastic ``satellite structures changes considerably between the three considered Mn/Ag systems, a fact that may be attributed to changes in the bonding nature of the Mn-$d$ orbitals. The system-dependence of the RXES spectrum is thus found to be much stronger than that of the corresponding absorption spectrum. Our results suggest that RXES in the Mn $L_{2,3}$ region may be used as a sensitive probe of the local environment of Mn atoms.
We report a resonant x-ray scattering (RXS) study of antiferromagnetic neptunium compounds NpCoGa_5 and NpRhGa_5 at the Np M_4 and Ga K-edges. Large resonant signals of magnetic dipole character are observed below the Neel temperatures at both edges. The signals at the Np edges confirm the behaviour determined previously from neutron diffraction, i.e. the moments along [001] in NpCoGa_{5} and in NpRhGa_5 a reorientation of the moments from the c-axis direction to the ab plane. In the latter material, on application of magnetic field of 9 Tesla along the [010] direction we observe a change in the population of different [110]-type domains. We observe also a magnetic dipole signal at the Ga K-edge, similarly to the reported UGa_3 case, that can be interpreted within a semi-localized model as an orbital polarization of the Ga 4p states induced via strong hybridization with the Np 5f valence band. Quantitative analysis of the signal shows that the Ga dipole on the two different Ga sites follows closely the Np magnetic moment reorientation in NpRhGa_5. The ratios of the signals on the two inequivalent Ga sites are not the same for the different compounds.
X-ray resonant scattering has been used to measure the magnetic order of the Dy ions below 40K in multiferroic DyMn$_{2}$O$_{5}$. The magnetic order has a complex behaviour. There are several different ordering wavevectors, both incommensurate and commensurate, as the temperature is varied. In addition a non-magnetic signal at twice the wavevector of one of the commensurate signals is observed, the maximum intensity of which occurs at the same temperature as a local maximum in the ferroelectric polarisation. Some of the results, which bear resemblence to the behaviour of other members of the RMn$_{2}$O$_{5}$ family of multiferroic materials, may be explained by a theory based on so-called acentric spin-density waves.
74 - T. Kroll , M. Knupfer , J. Geck 2006
Measurements of polarization and temperature dependent soft x-ray absorption have been performed on Na_xCoO_2 single crystals with x=0.4 and x=0.6. They show a deviation of the local trigonal symmetry of the CoO_6 octahedra, which is temperature independent in a temperature range between 25 K and 372 K. This deviation was found to be different for Co^{3+} and Co^{4+} sites. With the help of a cluster calculation we are able to interpret the Co L_{23}-edge absorption spectrum and find a doping dependent energy splitting between the t_{2g} and the e_g levels (10Dq) in Na_xCoO_2.
212 - J. Koo , C. Song , S. Ji 2007
Comprehensive x-ray scattering studies, including resonant scattering at Mn L-edge, Tb L- and M-edges, were performed on single crystals of TbMn2O5. X-ray intensities were observed at a forbidden Bragg position in the ferroelectric phases, in addition to the lattice and the magnetic modulation peaks. Temperature dependences of their intensities and the relation between the modulation wave vectors provide direct evidences of exchange striction induced ferroelectricity. Resonant x-ray scattering results demonstrate the presence of multiple magnetic orders by exhibiting their different temperature dependences. The commensurate-to-incommensurate phase transition around 24 K is attributed to discommensuration through phase slipping of the magnetic orders in spin frustrated geometries. We proposed that the low temperature incommensurate phase consists of the commensurate magnetic domains separated by anti-phase domain walls which reduce spontaneous polarizations abruptly at the transition.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا