Do you want to publish a course? Click here

Stripe fractionalization II: the quantum spin nematic and the Abrikosov lattice

46   0   0.0 ( 0 )
 Added by Zohar Nussinov
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

In part (I) of this two paper series on stripe fractionalization, we argued that in principle the `domain wall-ness of the stripe phase could persist in the spin and charge disordered superconductors, and we demonstrated how this physics is in one-to-one correspondence with Ising gauge theory. Here we focus on yet another type of order suggested by the gauge theory: the quantum spin nematic. Although it is not easy to measure this order directly, we argue that the superconducting vortices act as perturbations destroying the gauge symmetry locally. This turns out to give rise to a simple example of a gauge-theoretical phenomenon known as topological interaction. As a consequence, at any finite vortex density a globally ordered antiferromagnet emerges. This offers a potential explanation for recent observations in the underdoped 214 system.



rate research

Read More

136 - D. Labat , I. Paul 2017
We study how superconducting Tc is affected as an electronic system in a tetragonal environment is tuned to a nematic quantum critical point (QCP). Including coupling of the electronic nematic variable to the relevant lattice strain restricts criticality only to certain high symmetry directions. This allows a weak-coupling treatment, even at the QCP. We develop a criterion distinguishing weak and strong Tc enhancements upon approaching the QCP. We show that negligible Tc enhancement occurs only if pairing is dominated by a non-nematic interaction away from the QCP, and simultaneously if the electron-strain coupling is sufficiently strong. We argue this is the case of the iron superconductors.
131 - S. Chibani , D. Farina , P. Massat 2020
We report the evolution of nematic fluctuations in FeSe$_{1-x}$S$_x$ single crystals as a function of Sulfur content $x$ across the nematic quantum critical point (QCP) $x_csim$ 0.17 via Raman scattering. The Raman spectra in the $B_{1g}$ nematic channel consist of two components, but only the low energy one displays clear fingerprints of critical behavior and is attributed to itinerant carriers. Curie-Weiss analysis of the associated nematic susceptibility indicates a substantial effect of nemato-elastic coupling which shifts the location of the nematic QCP. We argue that this lattice-induced shift likely explains the absence of any enhancement of the superconducting transition temperature at the QCP. The presence of two components in the nematic fluctuations spectrum is attributed to the dual aspect of electronic degrees of freedom in Hunds metals, with both itinerant carriers and local moments contributing to the nematic susceptibility.
Magnetic interactions are generally believed to play a key role in mediating electron pairing for superconductivity in iron arsenides; yet their character is only partially understood. Experimentally, the antiferromagnetic (AF) transition is always preceded by or coincident with a tetragonal to orthorhombic structural distortion. Although it has been suggested that this lattice distortion is driven by an electronic nematic phase, where a spontaneously generated electronic liquid crystal state breaks the C4 rotational symmetry of the paramagnetic state, experimental evidence for electronic anisotropy has been either in the low-temperature orthorhombic phase or the tetragonal phase under uniaxial pressure that breaks this symmetry. Here we use inelastic neutron scattering to demonstrate the presence of a large in-plane spin anisotropy above TN in the unstressed tetragonal phase of BaFe2As2. In the low-temperature orthorhombic phase, we find highly anisotropic spin waves with a large damping along the AF a-axis direction. On warming the system to the paramagnetic tetragonal phase, the low-energy spin waves evolve into quasi-elastic excitations, while the anisotropic spin excitations near the zone boundary persist. These results strongly suggest that the spin nematicity we find in the tetragonal phase of BaFe2As2 is the source of the electronic and orbital anisotropy observed above TN by other probes, and has profound consequences for the physics of these materials.
The origin of the electronic nematicity in FeSe, which occurs below a tetragonal-to-orthorhombic structural transition temperature $T_s$ ~ 90 K, well above the superconducting transition temperature $T_c = 9$ K, is one of the most important unresolved puzzles in the study of iron-based superconductors. In both spin- and orbital-nematic models, the intrinsic magnetic excitations at $mathbf{Q}_1=(1, 0)$ and $mathbf{Q}_2=(0, 1)$ of twin-free FeSe are expected to behave differently below $T_s$. Although anisotropic spin fluctuations below 10 meV between $mathbf{Q}_1$ and $mathbf{Q}_2$ have been unambiguously observed by inelastic neutron scattering around $T_c (<<T_s)$, it remains unclear whether such an anisotropy also persists at higher energies and associates with the nematic transition $T_s$. Here we use resonant inelastic x-ray scattering (RIXS) to probe the high-energy magnetic excitations of uniaxial-strain detwinned FeSe. A prominent anisotropy between the magnetic excitations along the $H$ and $K$ directions is found to persist to $sim200$ meV, which is even more pronounced than the anisotropy of spin waves in BaFe$_2$As$_2$. This anisotropy decreases gradually with increasing temperature and finally vanishes at a temperature around the nematic transition temperature $T_s$. Our results reveal an unprecedented strong spin-excitation anisotropy with a large energy scale well above the $d_{xz}/d_{yz}$ orbital splitting, suggesting that the nematic phase transition is primarily spin-driven. Moreover, the measured high-energy spin excitations are dispersive and underdamped, which can be understood from a local-moment perspective. Our findings provide the much-needed understanding of the mechanism for the nematicity of FeSe and point to a unified description of the correlation physics across seemingly distinct classes of Fe-based superconductors.
159 - M. Kofu , S. -H. Lee , M. Fujita 2008
Low energy spin excitations were investigated in the static stripe phase of La_{2-x}Sr_xCuO_4 using elastic and inelastic neutron scattering on single crystals. For x = 1/8 in which long-range static stripe order exists, an energy gap of E_g = 4 meV exists in the excitation spectrum in addition to strong quasi-elastic, incommensurate spin fluctuations associated with the static stripes. When x increases, the spectral weight of the spin fluctuations shifts from the quasi-elastic continuum to the excitation spectrum above E_g. The dynamic correlation length as a function of energy and the temperature evolution of the energy spectrum suggest a phase separation of two distinct magnetic phases in real space.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا