No Arabic abstract
Time-resolved Kerr microscopy is used to study the excitations of individual micron- scale ferromagnetic thin film elements in their remnant state. Thin (18 nm) square elements with edge dimensions between 1 and 10 $mu$m form closure domain structures with 90 degree Neel walls between domains. We identify two classes of excitations in these systems. The first corresponds to precession of the magnetization about the local demagnetizing field in each quadrant, while the second excitation is localized in the domain walls. Two modes are also identified in ferromagnetic disks with thicknesses of 60 nm and diameters from 2 $mu$m down to 500 nm. The equilibrium state of each disk is a vortex with a singularity at the center. As in the squares, the higher frequency mode is due to precession about the internal field, but in this case the lower frequency mode corresponds to gyrotropic motion of the entire vortex. These results demonstrate clearly the existence of well-defined excitations in inhomogeneously magnetized microstructures.
Hexagonal manganites REMnO3 (RE, rare earths) have attracted significant attention due to their potential applications as multiferroic materials and the intriguing physics associated with the topological defects. The two-dimensional (2D) and 3D domain and vortex structure evolution of REMnO3 is predicted using the phase-field method based on a thermodynamic potential constructed from first-principles calculations. In 3D spaces, vortex lines show three types of topological changes, i.e. shrinking, coalescence, and splitting, with the latter two caused by the interaction and exchange of vortex loops. Compared to the coarsening rate of the isotropic XY model, the six-fold degeneracy gives rise to negligible differences with the vortex-antivortex annihilation controlling the scaling dynamics, whereas the anisotropy of interfacial energy results in a deviation. The temporal evolution of domain and vortex structures serves as a platform to fully explore the mesoscale mechanisms for the 0-D and 1-D topological defects.
Time-resolved soft X-ray transmission microscopy is applied to image the current-induced resonant dynamics of the magnetic vortex core realized in a micronsized Permalloy disk. The high spatial resolution better than 25 nm enables us to observe the resonant motion of the vortex core. The result also provides the spin polarization of the current to be 0.67 +/-0.16 for Permalloy by fitting the experimental results with an analytical model in the framework of the spin-transfer torque.
This paper has been withdrawn by the author due to a serious errors in the calculations.
Through numerical solution of the time-dependent Schrodinger equation, we demonstrate that magnetic chains with uniaxial anisotropy support stable structures, separating ferromagnetic domains of opposite magnetization. These structures, domain walls in a quantum system, are shown to remain stable if they interact with a spin wave. We find that a domain wall transmits the longitudinal component of the spin excitations only. Our results suggests that continuous, classical spin models described by LLG equation cannot be used to describe spin wave-domain wall interaction in microscopic magnetic systems.
Strong vortex pinning in FeSe could be useful for technological applications and could provide clues about the coexistence of superconductivity and nematicity. To characterize the pinning of individual, isolated vortices, we simultaneously apply a local magnetic field and image the vortex motion with scanning SQUID susceptibility. We find that the pinning is highly anisotropic: the vortices move easily along directions that are parallel to the orientations of twin domain walls and pin strongly in a perpendicular direction. These results are consistent with a scenario in which the anisotropy arises from vortex pinning on domain walls and quantify the dynamics of individual vortex pinning in FeSe.