Do you want to publish a course? Click here

Surface characterization and surface electronic structure of organic quasi-one-dimensional charge transfer salts

96   0   0.0 ( 0 )
 Added by M. Sing
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have thoroughly characterized the surfaces of the organic charge-transfer salts TTF-TCNQ and (TMTSF)2PF6 which are generally acknowledged as prototypical examples of one-dimensional conductors. In particular x-ray induced photoemission spectroscopy turns out to be a valuable non-destructive diagnostic tool. We show that the observation of generic one-dimensional signatures in photoemission spectra of the valence band close to the Fermi level can be strongly affected by surface effects. Especially, great care must be exercised taking evidence for an unusual one-dimensional many-body state exclusively from the observation of a pseudogap.



rate research

Read More

Motivated by recent experimental suggestions of charge-order-driven ferroelectricity in organic charge-transfer salts, such as $kappa$-(BEDT-TTF)$_2$Cu[N(CN)$_2$]Cl, we investigate magnetic and charge-ordered phases that emerge in an extended two-orbital Hubbard model on the anisotropic triangular lattice at $3/4$ filling. This model takes into account the presence of two organic BEDT-TTF molecules, which form a dimer on each site of the lattice, and includes short-range intramolecular and intermolecular interactions and hoppings. By using variational wave functions and quantum Monte Carlo techniques, we find two polar states with charge disproportionation inside the dimer, hinting to ferroelectricity. These charge-ordered insulating phases are stabilized in the strongly correlated limit and their actual charge pattern is determined by the relative strength of intradimer to interdimer couplings. Our results suggest that ferroelectricity is not driven by magnetism, since these polar phases can be stabilized also without antiferromagnetic order and provide a possible microscopic explanation of the experimental observations. In addition, a conventional dimer-Mott state (with uniform density and antiferromagnetic order) and a nonpolar charge-ordered state (with charge-rich and charge-poor dimers forming a checkerboard pattern) can be stabilized in the strong-coupling regime. Finally, when electron-electron interactions are weak, metallic states appear, with either uniform charge distribution or a peculiar $12$-site periodicity that generates honeycomb-like charge order.
We study the electronic structure of the quasi-one-dimensional organic conductor TTF-TCNQ by means of density-functional band theory, Hubbard model calculations, and angle-resolved photoelectron spectroscopy (ARPES). The experimental spectra reveal significant quantitative and qualitative discrepancies to band theory. We demonstrate that the dispersive behavior as well as the temperature-dependence of the spectra can be consistently explained by the finite-energy physics of the one-dimensional Hubbard model at metallic doping. The model description can even be made quantitative, if one accounts for an enhanced hopping integral at the surface, most likely caused by a relaxation of the topmost molecular layer. Within this interpretation the ARPES data provide spectroscopic evidence for the existence of spin-charge separation on an energy scale of the conduction band width. The failure of the one-dimensional Hubbard model for the {it low-energy} spectral behavior is attributed to interchain coupling and the additional effect of electron-phonon interaction.
We have performed angle-resolved photoemission spectroscopy on epitaxial VTe2 films to elucidate the relationship between the fermiology and charge-density waves (CDW). We found that a two-dimensional triangular pocket in 1 monolayer (ML) VTe2 is converted to a strongly warped quasi-one-dimensional (1D) Fermi surface in the 6ML counterpart, likely associated with the 1T-to-1T structural phase transition. We also revealed a metallic Fermi edge on the entire Fermi surface in 6ML at low temperature distinct from anisotropic pseudogap in 1ML, signifying a contrast behavior of CDW that is also supported by first-principles band-structure caluculations. The present result points to the importance of simultaneously controlling the structural phase and fermiology to manipulate the CDW properties in ultrathin transition-metal dichalcogenides.
200 - Jose Riera 2000
Charge, spin, as well as lattice instabilities are investigated in isolated or weakly coupled chains of correlated electrons at quarter-filling. Our analysis is based on extended Hubbard models including nearest neighbor repulsion and Peierls coupling to lattice degrees of freedom. While treating the electronic quantum fluctuations exactly, the lattice structure is optimized self-consistently. We show that, generically, isolated chains undergo instabilities towards coexisting charge density waves (CDW) and bond order waves (BOW) insulating spin-gapped phases. The spin and charge gaps of the BOW-CDW phase are computed. In the presence of an interchain magnetic coupling spin density waves phases including a CDW or a BOW component are also found. Our results are discussed in the context of insulating charge transfer salts.
According to the celebrated Onsagar-Lifshitz paradigm, the observation of Shubnikov de-Haas and de-Haas van Alphen (SdHvA) oscillations is an indication of the presence of `closed orbit Fermi surface in the bulk. We present a real-space based calculation of SdHvA oscillations in generalized quasi-one-dimensional lattices by relaxing the quasi-classical approximations embedded in this decades old Onsagar-Lifshitz paradigm. We find that sizable quantum oscillation can arise from `open Fermi surfaces as long as cyclotron orbits can form in real-space with finite, but not necessarily equal, electron hopping along both x- and y-directions. Our results quantitatively explain the puzzling emergence of SdHvA oscillation in various quasi-one-dimensional materials, including the chain state of YBa2Cu3O6 cuprates, organic materials, various ladder compounds, weakly coupled linear chains, or quantum wires, and other related systems.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا