We have studied magnetic and transport properties on different manganese oxide based compounds exhibiting phase separation: polycrystalline La5/8-yPryCa3/8MnO3 (y=0.3) and La1/2Ca1/2Mn1-zFezO3 (z = 0.05), and single crystals of La5/8-yPryCa3/8MnO3 (y=0.35). Time dependent effects indicate that the fractions of the coexisting phases are dynamically changing in a definite temperature range. We found that in this range the ferromagnetic fraction f can be easily tuned by application of low magnetic fields (< 1 T). The effect is persistent after the field is turned off, thus the field remains imprinted in the actual value of f and can be recovered through transport measurements. This effect is due both to the existence of a true phase separated equilibrium state with definite equilibrium fraction f0, and to the slow growth dynamics. The fact that the same global features were found on different compounds and in polycrystalline and single crystalline samples, suggests that the effect is a general feature of some phase separated media.