The single parameter scaling hypothesis is the foundation of our understanding of the Anderson transition. However, the conductance of a disordered system is a fluctuating quantity which does not obey a one parameter scaling law. It is essential to investigate the scaling of the full conductance distribution to establish the scaling hypothesis. We present a clear cut numerical demonstration that the conductance distribution indeed obeys one parameter scaling near the Anderson transition.
We analyze the scaling behavior of the higher Lyapunov exponents at the Anderson transition. We estimate the critical exponent and verify its universality and that of the critical conductance distribution for box, Gaussian and Lorentzian distributions of the random potential.
The boundary condition dependence of the critical behavior for the three dimensional Anderson transition is investigated. A strong dependence of the scaling function and the critical conductance distribution on the boundary conditions is found, while the critical disorder and critical exponent are found to be independent of the boundary conditions.
We investigated numerically the distribution of participation numbers in the 3d Anderson tight-binding model at the localization-delocalization threshold. These numbers in {em one} disordered system experience strong level-to-level fluctuations in a wide energy range. The fluctuations grow substantially with increasing size of the system. We argue that the fluctuations of the correlation dimension, $D_2$ of the wave functions are the main reason for this. The distribution of these correlation dimensions at the transition is calculated. In the thermodynamic limit ($Lto infty$) it does not depend on the system size $L$. An interesting feature of this limiting distribution is that it vanishes exactly at $D_{rm 2max}=1.83$, the highest possible value of the correlation dimension at the Anderson threshold in this model.
The distribution of the correlation dimension in a power law band random matrix model having critical, i.e. multifractal, eigenstates is numerically investigated. It is shown that their probability distribution function has a fixed point as the system size is varied exactly at a value obtained from the scaling properties of the typical value of the inverse participation number. Therefore the state-to-state fluctuation of the correlation dimension is tightly linked to the scaling properties of the joint probability distribution of the eigenstates.
We study the level-spacing distribution function $P(s)$ at the Anderson transition by paying attention to anomalously localized states (ALS) which contribute to statistical properties at the critical point. It is found that the distribution $P(s)$ for level pairs of ALS coincides with that for pairs of typical multifractal states. This implies that ALS do not affect the shape of the critical level-spacing distribution function. We also show that the insensitivity of $P(s)$ to ALS is a consequence of multifractality in tail structures of ALS.