No Arabic abstract
We have studied the tunneling properties of GaSb/AlSb/InAs/AlSb/GaSb heterostructures, in which electrons and holes accumulate in the InAs and GaSb regions respectively, under a magnetic field parallel to the interfaces. The low-temperature (T = 4.2K), zero-bias magnetoconductance has shown a behavior with field that evidences the two-dimensional character of both electrons and holes and that has allowed us to determine the hole density and the electron-hole separation. The observed field dependence of the current-voltage characteristics is explained by the relative change in parallel momentum of electrons and holes induced by the field.
The ground-state electronic configuration of three coupled bidimensional electron gases has been determined using a variational Hartree-Fock approach, at zero magnetic field. The layers are Coulomb coupled, and tunneling is present between neighboring layers. In the limit of small separation between layers, the tunneling becomes the dominant energy contribution, while for large distance between layers the physics is driven by the Hartree electrostatic energy. Transition from tunneling to hartree dominated physics is shifted towards larger layer separation values as the total bidimensional density of the trilayers decreases. The inter-layer exchange helps in stabilize a balanced configuration, where the three layers are approximately equally occupied; most of the experiments are performed in the vicinity of this balanced configuration. Several ground-state configurations are consequence of a delicate interplay between tunneling and inter-subband exchange.
We study interaction effect of quantum spin Hall state in InAs/GaSb quantum wells under an in-plane magnetic field by using the self-consistent mean field theory. We construct a phase diagram as a function of intra-layer and inter-layer interactions, and identify two novel phases, a charge/spin density wave phase and an exciton condensate phase. The charge/spin density wave phase is topologically non-trivial with helical edge transport at the boundary, while the exciton condensate phase is topologically trivial. The Zeeman effect is strongly renormalized due to interaction in certain parameter regimes of the system, leading to a much smaller g-factor, which may stabilize the helical edge transport.
Equilibrium spin-current is calculated in a quasi-two-dimensional electron gas with finite thickness under in-plane magnetic field and in the presence of Rashba- and Dresselhaus spin-orbit interactions. The transverse confinement is modeled by means of a parabolic potential. An orbital effect of the in-plane magnetic field is shown to mix a transverse quantized spin-up state with nearest-neighboring spin-down states. The out-off-plane component of the equilibrium spin current appears to be not zero in the presence of an in-plane magnetic field, provided at least two transverse-quantized levels are filled. In the absence of the magnetic field the obtained results coincide with the well-known results, yielding cubic dependence of the equilibrium spin current on the spin-orbit coupling constants. The persistent spin-current vanishes in the absence of the magnetic field if Rashba- and Dresselhaus spin-orbit coefficients,{alpha} and {beta}, are equal each other. In-plane magnetic field destroys this symmetry, and accumulates a finite spin-current as {alpha} rightarrow {beta}. Magnetic field is shown to change strongly the equilibrium current of the in-plane spin components, and gives new contributions to the cubic-dependent on spin-orbit constants terms. These new terms depend linearly on the spin-orbit constants.
We calculate the conductance of a two-dimensional bilayer with inverted electron-hole bands, to study the sensitivity of the quantum spin Hall insulator (with helical edge conduction) to the combination of electrostatic disorder and a perpendicular magnetic field. The characteristic breakdown field for helical edge conduction splits into two fields with increasing disorder, a field $B_{c}$ for the transition into a quantum Hall insulator (supporting chiral edge conduction) and a smaller field $B_{c}$ for the transition to bulk conduction in a quasi-metallic regime. The spatial separation of the inverted bands, typical for broken-gap InAs/GaSb quantum wells, is essential for the magnetic-field induced bulk conduction --- there is no such regime in HgTe quantum wells.
We have investigated the field-angle behaviors of magnetic excitations under an in-plane magnetic field for proximate Kitaev systems. By employing the exact diagonalization method in conjunction with the linear spin wave theory, we have demonstrated that the magnetic excitation gap in the polarized phase is determined by the magnon excitation at $M$ points and has a strong anisotropy with respect to the field direction in the vicinity of the critical field limit. The specific heat from this magnon excitation bears qualitatively the same anisotropic behaviors as expected one for the non-Abelian spin liquid phase in the Kitaev model and experimentally observed one of the intermediate phases in $alpha$-RuCl$_3$.