Do you want to publish a course? Click here

Propagating and evanescent waves in absorbing media

73   0   0.0 ( 0 )
 Added by Andrew Armour
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

We compare the behavior of propagating and evanescent light waves in absorbing media with that of electrons in the presence of inelastic scattering. The imaginary part of the dielectric constant results primarily in an exponential decay of a propagating wave, but a phase shift for an evanescent wave. We then describe how the scattering of quantum particles out of a particular coherent channel can be modeled by introducing an imaginary part to the potential in analogy with the optical case. The imaginary part of the potential causes additional scattering which can dominate and actually prevent absorption of the wave for large enough values of the imaginary part. We also discuss the problem of maximizing the absorption of a wave and point out that the existence of a bound state greatly aids absorption. We illustrate this point by considering the absorption of light at the surface of a metal.



rate research

Read More

The problem of the Klein tunneling across a potential barrier in bi-layer graphene is addressed. The electron wave functions are treated as massive chiral particles. This treatment allows us to compute the statistical complexity and Fisher-Shannon information for each angle of incidence. The comparison of these magnitudes with the transmission coefficient through the barrier is performed. The role played by the evanescent waves on these magnitudes is disclosed. Due to the influence of these waves, it is found that the statistical measures take their minimum values not only in the situations of total transparency through the barrier, a phenomenon highly anisotropic for the Klein tunneling in bi-layer graphene.
Intense electromagnetic evanescent fields are thermally excited in near fields on material surfaces (at distances smaller than the wavelength of peak thermal radiation). The property of the fields is of strong interest for it is material-specific and is important for understanding a variety of surface-related effects, such as friction forces, Casimir forces, near-field heat transfer, and surface-coupled molecular dynamics. On metal surfaces, relevance of surface plasmon polaritons (SPlPs), coupled to collective motion of conduction electrons, has attracted strong interest, but has not been explicitly clarified up to the present time. Here, using a passive terahertz (THz) near-field microscope with unprecedented high sensitivity, we unveil detailed nature of thermally generated evanescent fields (wavelength:lamda0~14.5micron) on metals at room temperature. Our experimental results unambiguously indicate that the thermal waves are short-wavelength fluctuating electromagnetic fields, from which relevance of SPlPs is ruled out.
Insulating antiferromagnets are efficient and robust conductors of spin current. To realise the full potential of these materials within spintronics, the outstanding challenges are to demonstrate scalability down to nanometric lengthscales and the transmission of coherent spin currents. Here, we report the coherent transfer of spin angular momentum by excitation of evanescent spin waves of GHz frequency within antiferromagnetic NiO at room temperature. Using element-specific and phase-resolved x-ray ferromagnetic resonance, we probe the injection and transmission of ac spin current, and demonstrate that insertion of a few nanometre thick epitaxial NiO(001) layer between a ferromagnet and non-magnet can even enhance the flow of spin current. Our results pave the way towards coherent control of the phase and amplitude of spin currents at the nanoscale, and enable the realization of spin-logic devices and spin current amplifiers that operate at GHz and THz frequencies.
122 - A. Lara , V. Metlushko , 2014
Broadband magnetization response of equilateral triangular 1000 nm Permalloy dots has been studied under an in-plane magnetic field, applied parallel (buckle state) and perpendicular (Y state) to the triangles base. Micromagnetic simulations identify edge spin waves (E-SWs) in the buckle state as SWs propagating along the two adjacent edges. These quasi one-dimensional spin waves emitted by the vertex magnetic charges gradually transform from propagating to standing due to interference and are weakly affected by dipolar interdot interaction and variation of the aspect ratio. Spin waves in the Y state have a two dimensional character. These findings open perspectives for implementation of the E-SWs in magnonic crystals and thin films.
Significant enhancement of evanescent spatial harmonics inside the slabs of media with extreme optical anisotropy is revealed. This phenomenon results from the pumping of standing waves and has the feature of being weakly sensitive to the material losses. Such characteristics may enable subwavelength imaging at considerable distances away from the objects.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا