Do you want to publish a course? Click here

Ferroelectricity and isotope effects in hydrogen-bonded KDP crystals

53   0   0.0 ( 0 )
 Added by Ricardo Migoni
 Publication date 2002
  fields Physics
and research's language is English
 Authors S. Koval




Ask ChatGPT about the research

Based on an accurate first principles description of the energetics in H-bonded KDP, we conduct a first study of nuclear quantum effects and of the changes brought about by deuteration. Cluster tunneling involving also heavy ions is allowed, the main effect of deuteration being a depletion of the proton probability density at the O-H-O bridge center, which in turn weakens its proton-mediated covalent bonding. The ensuing lattice expansion couples selfconsistently with the proton off-centering, thus explaining both the giant isotope effect, and its close connection with geometrical effects.



rate research

Read More

62 - Alberto Girlando 2019
Organic ferroelectric materials are in demand in the growing field of environmentally friendly, lightweight electronics. Donor-Acceptor charge transfer crystals have been recently proposed as a new class of organic ferroelectrics, which may possess a new kind of ferroelectricity, the so-called electronic ferroelectricity, larger and with faster polarity switching in comparison with conventional, inorganic or organic, ferroelectrics. The current research aimed at achieving ambient conditions electronic ferroelectricity in organic charge transfer crystals is shortly reviewed, in such a way to evidence the emerging criteria that have to be fulfilled to reach this challenging goal.
In recent years, the availability of highly pure stable isotopes has made possible the investigation of the dependence of the physical properties of crystals, in particular semiconductors, on their isotopic composition. Following the investigation of the specific heat ($C_p$, $C_v$) of monatomic crystals such as diamond, silicon, and germanium, similar investigations have been undertaken for the tetrahedral diatomic systems ZnO and GaN (wurtzite structure), for which the effect of the mass of the cation differs from that of the anion. In this article we present measurements for a semiconductor with rock salt structure, namely lead sulfide. Because of the large difference in the atomic mass of both constituents ($M_{rm Pb}$= 207.21 and ($M_{rm S}$=32.06 a.m.u., for the natural isotopic abundance) the effects of varying the cation and that of the anion mass are very different for this canonical semiconductor. We compare the measured temperature dependence of $C_p approx C_v$, and the corresponding derivatives with respect to ($M_{rm Pb}$ and $M_{rm S}$), with textit{textit{ab initio}} calculations based on the lattice dynamics obtained from the local density approximation (LDA) electronic band structure. Quantitative deviations between theory and experiment are attributed to the absence of spin-orbit interaction in the ABINIT program used for the electronic band structure calculations.
Analysis of the electron density distribution in clusters composed of hydrogen fluoride, water, and ammonia molecules, especially within the hydrogen-bond domains, reveals the existence of both sigma- and pi-binding between molecules. The sigma-kind density distribution determines the mutual orientation of molecules. A pi-system may be delocalized conjugated, which provides additional stabilization of molecular clusters. In those clusters where the sequence of hydrogen bonds is not planar, a peculiar kind of pi-conjugation exists. HF anion and H5O2 cation are characterized by quasi-triple bonds between the electronegative atoms. The most long-lived species stabilized by delocalized pi-binding are rings and open or closed hoops composed of fused rings. It is conjugated pi-system that determines cooperativity phenomenon.
We have studied ferroelectricity and photovoltaic effects in atomic layer deposited (ALD) 40-nm thick SnTiO$_{x}$ films deposited directly onto p-type (001)Si substrate. These films showed well-saturated, square and repeatable hysteresis loops with remnant polarization of 1.5 $mu$C/cm$^{2}$ at room temperature, as detected by out-of-plane polarization versus electric field (P-E) and field cycling measurements. A photo-induced enhancement in ferroelectricity was also observed as the spontaneous polarization increased under white-light illumination. The ferroelectricity exhibits relaxor characteristics with dielectric peak shifting from ca. T = 600 K at f = 1 MHz to ca. 500 K at 100 Hz. Moreover, our films showed ferroelectric photovoltaic behavior under the illumination of a wide spectrum of light, from visible to ultraviolet regions. A combination of experiment and theoretical calculation provided optical band gap of SnTiO$_{x}$ films which lies in the visible range of white light spectra. Our study leads a way to develop green ferroelectric SnTiO$_{x}$ thin films, which are compatible to semiconducting processes, and can be used for various ferroelectric and dielectric applications.
68 - Zhang Gang , Baowen Li 2005
We study the dependence of thermal conductivity of single walled nanotubes (SWNT) on chirality and isotope impurity by nonequilibrium molecular dynamics method with accurate potentials. It is found that, contrary to electronic conductivity, the thermal conductivity is insensitive to the chirality. The isotope impurity, however, can reduce the thermal conductivity up to 60% and change the temperature dependence behavior. We also study the dependence of thermal conductivity on tube length for tubes of different radius at different temperatures.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا