The formation of a Ag stabilized regular step lattice on vicinal Si(111) miscut towards [11-2] is reported. The step bunching characteristic of the clean surface is prevented by a single-domain Si(111)-(3x1)-Ag reconstruction. The nanostructured surface is used as a template for growing one-dimensional arrays of 1 nm sized Ag quantum dots with a preferential spacing of 1.5 nm along the rows.
Adsorption of submonolayer amounts of Ag on vicinal Cu(111) induces periodic faceting. The equilibrium structure is characterized by Ag-covered facets that alternate with clean Cu stripes. In the atomic scale, the driving force is the matching of Ag(111)-like packed rows with Cu(111) terraces underneath. This determines the preference for the facet orientation and the evolution of different phases as a function of coverage. Both Cu and Ag stripe widths can be varied smoothly in the 3-30 nm range by tuning Ag coverage, allowing to test theoretical predictions of elastic theories.
We study current-induced step bunching and wandering instabilities with subsequent pattern formations on vicinal surfaces. A novel two-region diffusion model is developed, where we assume that there are different diffusion rates on terraces and in a small region around a step, generally arising from local differences in surface reconstruction. We determine the steady state solutions for a uniform train of straight steps, from which step bunching and in-phase wandering instabilities are deduced. The physically suggestive parameters of the two-region model are then mapped to the effective parameters in the usual sharp step models. Interestingly, a negative kinetic coefficient results when the diffusion in the step region is faster than on terraces. A consistent physical picture of current-induced instabilities on Si(111) is suggested based on the results of linear stability analysis. In this picture the step wandering instability is driven by step edge diffusion and is not of the Mullins-Sekerka type. Step bunching and wandering patterns at longer times are determined numerically by solving a set of coupled equations relating the velocity of a step to local properties of the step and its neighbors. We use a geometric representation of the step to derive a nonlinear evolution equation describing step wandering, which can explain experimental results where the peaks of the wandering steps align with the direction of the driving field.
We present a detailed analysis of the band structure of the BiAg$_2$/Ag/Si(111) trilayer system by means of high resolution Angle Resolved Photoemission Spectroscopy (ARPES). BiAg2/Ag/Si(111) exhibits a complex spin polarized electronic structure due to giant spin-orbit interactions. We show that a complete set of constant energy ARPES maps, supplemented by a modified nearly free electron calculation, provides a unique insight into the structure of the spin polarized bands and spin gaps. We also show that the complex gap structure can be continuously tuned in energy by a controlled deposition of an alkali metal.
The structure and dynamics of atomic oxygen adsorbed on Ag(410) and Ag(210) surfaces have been investigated using density functional theory. Our results show that the adsorption configuration in which O adatoms decorate the upper side of the (110) steps forming O--Ag--O rows is particularly stable for both surfaces. On Ag(210), this arrangement is more stable than other configurations at all the investigated coverages. On Ag(410), adsorption on the terrace and at the step edge are almost degenerate, the former being slightly preferred at low coverage while the latter is stabilized by increasing the coverage. These findings are substantiated by a comparison between the vibrational modes, calculated within density-functional perturbation theory, and the HREEL spectrum which has been recently measured in these systems.
We present a combined experimental and theoretical study of submonolayer heteroepitaxial growth of Ag on Si(111)-7x7 at temperatures from 420 K to 550 K when Ag atoms can easily diffuse on the surface and the reconstruction 7x7 remains stable. STM measurements for coverages from 0.05 ML to 0.6 ML show that there is an excess of smallest islands (each of them fills up just one half-unit cell - HUC) in all stages of growth. Formation of 2D wetting layer proceeds by continuous nucleation of the smallest islands in the proximity of larger 2D islands (extended over several HUCs) and following coalescence with them. Such a growth scenario is verified by kinetic Monte Carlo simulation which uses a coarse-grained model based on a limited capacity of HUC and a mechanism which increases nucleation probability in a neighbourhood of already saturated HUCs (correlated nucleation). The model provides a good fit for experimental dependences of the relative number of Ag-occupied HUCs and the preference in occupation of faulted HUCs on temperature and amount of deposited Ag. Parameters obtained for the hopping of Ag adatoms between HUCs agree with those reported earlier for initial stages of growth. The model provides two new parameters - maximum number of Ag atoms inside HUC, and on HUC boundary.